Antibiotic Action on the Ribosomal Peptidyl Transferase Centre

  • D. Vazquez
  • M. Barbacid
  • R. Fernandez-Muñoz
Conference paper
Part of the Topics in Infectious Diseases book series (TIDIS, volume 1)


Peptide bond formation in protein synthesis takes place by linkage of the carboxyl group at the C-terminal end of the peptidyl residue held in the ribosomal P-site with the α-NH2 group of the amino acid held in the ribosomal A-site.


Peptide Bond Formation Tenuazonic Acid Peptidyl Transferase Peptidyl Transferase Centre Eukaryotic Ribosome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. BALIGA, B.S., M.G. SCHECHTMAN, R.D. NOLAN, and H.N. MUNRO: Influence of temperature and monovalent cations on the reactivity of the donor and acceptor sites on mammalian ribosomes. Biochim.Biophys.Acta 312, 349–357 (1973).PubMedGoogle Scholar
  2. BALLESTA, J.P.G., V. MONTEJO, F. HERNANDEZ, and D. VAZQUEZ: Alteration of ribosomal proteins and functions by 2-methoxy-5-nitrotropone. Eur.J.Biochem. 42, 167–175 (1974).PubMedCrossRefGoogle Scholar
  3. BALLESTA, J.P.G., V. MONTEJO, and D. VAZQUEZ: Reconstitution of the 50S ribosome subunit. Localization of activities related to the peptidyl transferase centre. FEBS Letters 19, 75–78 (1971).PubMedCrossRefGoogle Scholar
  4. BARBACID, M., and D. VAZQUEZ: Binding of acetyl-[lt]trichodermin to the peptidyl transferase centre of eukaryotic ribosomes. Eur.J. Biochem. 44, 437–444 (1974c).PubMedCrossRefGoogle Scholar
  5. BARBACID, M., and D. VAZQUEZ: [G-3H]Gougerotin binding to ribosomes. Heterogeneity of eukaryotic ribosomes. Eur. J. Biochem. 44, 445–453 (1974a).PubMedCrossRefGoogle Scholar
  6. BARBACID, M., and D. VAZQUEZ: [3H]Anisomycin binding to eukaryotic ribosomes. J. Mol. Biol. 84, 603–623 (1974b).PubMedCrossRefGoogle Scholar
  7. BATTANER, E., and D. VAZQUEZ: Inhibitors of protein synthesis by ribosomes of the 80S type. Biochim. Biophys. Acta 154, 316–330 (1971).Google Scholar
  8. BEAUDET, A.L., and C.T. CASKEY: Polypeptide chain termination. In: The mechanism of protein synthesis and its regulation, ed. L. Bosch, p. 133–172. Amsterdam-London: North Holland Publishing Company (1972).Google Scholar
  9. BERMAN, M.L., and R. MONIER: Influence of the 30S ribosomal subunit on the peptidyl transferase activity of the 50S ribosomal subunit from Escherichia coli Biochimie 53, 233–242 (1971).Google Scholar
  10. BLOBEL, G., and D. SABATINI: Dissociation of mammalian polyribosomes into subunits by puromycin. Proc.Natl.Acad.Sci. U.S. 68, 390–394 (1971).CrossRefGoogle Scholar
  11. BRETSCHER, M.S., and K.A. MARCKER: Polypeptidyl-sribonucleic acid and amino-acyl-sribonucleic acid binding sites on ribosomes. Nature 211, 380–384 (1966).PubMedCrossRefGoogle Scholar
  12. CAPECCHI, M.R., and H.A. KLEIN: Characterization of three proteins involved in peptide chain termination. Cold Spring Harb.Symp. Quant.Biol. 34, 469–477 (1969).Google Scholar
  13. CARRASCO, L., M. BARBACID, and D. VAZQUEZ: The trichodermin group of antibiotics, inhibitors of peptide bond formation by eukaryotic ribosomes. Biochim.Biophys.Acta 312, 368–376 (1973).PubMedGoogle Scholar
  14. CARRASCO, L., and D. VAZQUEZ: Differences in eukaryotic ribosomes detected by the selective action of an antibiotic. Biochim. Biophys.Acta 319, 209–215 (1973).PubMedGoogle Scholar
  15. CASKEY, T., E. SCOLNTCK, R. TOMPKINS, J. GOLDSTEIN, and G. MILMAN: Peptide chain termination, codon, protein factor and ribosomal requirements. Cold Spring Harb.Symp.Quant.Biol. 34, 479–488 (1969).PubMedCrossRefGoogle Scholar
  16. CELMA, M.L., R.E. MONRO, and D. VAZQUEZ: Substrate and antibiotic binding sites at the peptidyl transferase centre of Escherichia coli ribosomes. FEBS Letters 6, 273–277 (1970).PubMedCrossRefGoogle Scholar
  17. CELMA, M.L., R.E. MONRO, and D. VAZQUEZ: Substrate and antibiotic binding sites at the peptidyl transferase center of Escherichia coli ribosomes: Binding of UACCA-Leu to 50S subunits. FEBS Letters 13, 247–251 (1971).PubMedCrossRefGoogle Scholar
  18. CERNA, J., I. RYCHLIK, and J. JONAK: Peptidyl transferase activity of Escherichia coli ribosomes digested by ribonuclease T1. Eur.J. Biochem. 34, 551–556 (1973b).CrossRefGoogle Scholar
  19. CERNA, J., I. RYCHLIK, A.A. KRAYEVSKY, and B.P. GOTTIKH: pA-fMet, a new donor substrate for ribosomal peptidyl transferase. In: Ribosomes and RNA metabolism, ed. J. Zelinka and J. Balan, p. 285–295. Bratislava: Publishing House of the Slovak Academy of Sciences (1973a).Google Scholar
  20. CERNA, J., I. RYCHLIK, J. ZEMLICKA, and S. CHLALEK: Substrate specificity of ribosomal peptidyl transferase. II. 2’(3’)-o-aminoacyl nucleosides as acceptors of the peptide chain in the fragment reaction. Biochim.Biophys.Acta 204, 203–209 (1970).PubMedGoogle Scholar
  21. CONTRERAS, A., M. BARBACID, and D. VAZQUEZ: Binding to ribosomes and mode of action of chloramphenicol analogues. Biochim.Biophys. Acta 349, 376–388 (1974).Google Scholar
  22. CUNDLIFFE, E.: Antibiotics and polyribosomes. II. Some effects of lincomycin, spiramycin, and streptogramin A in vivo. Biochemistry 8, 2063–2066 (1969).PubMedCrossRefGoogle Scholar
  23. CUNDLIFFE, E., M. CANNON, and J. DAVIES: Mechanism of inhibition of eukaryotic protein synthesis by trichothecene fungal toxins. Proc.Natl.Acad.Sci. U.S. 71, 30–34 (1974).CrossRefGoogle Scholar
  24. CZERNILOFSKY, A.P., and E. KUECHLER: Affinity label for the tRNA binding site on the Escherichia coli ribosome. Biochim.Biophys.Acta 272, 667–671 (1972).PubMedGoogle Scholar
  25. CZERNILOFSKY, A.P., E. COLLATZ, G. STOFFLER, and E. KUECHLER: Proteins at the tRNA binding sites of Escherichia coli ribosomes. Proc. Natl. Acad. Sci. U.S. 71, 230–234 (1974).CrossRefGoogle Scholar
  26. DEKIO, S., R.TAKATA, S. OSAWA, K. TANAKA, and M. TAMAKI: Genetic studies of the ribosomal proteins in Escherichia coli. IV. Pattern of the alteration of ribosomal protein components in mutants resistant to spectinomycin or erythromycin in different strains of Escherichia coli. Mol.Gen.Genet. 107, 39–49 (1970).PubMedCrossRefGoogle Scholar
  27. ENNIS, H.L.: Polysome metabolism in Escherichia coli: Effect of antibiotics on polysome stability. Antim.Agents Chemother. 1, 197–203 (1972).Google Scholar
  28. ERDMANN, V.A., H.G. DOBERER, and M. SPRINZL: Structure and function of 5S RNA: The role of the 3’ terminus in 5S RNA function. Mol.Gen. Genet. 114, 89–94 (1971b).Google Scholar
  29. ERDMANN, V.A., S. FAHNESTOCK, K. HIGO, and M. NOMURA: Role of 5S RNA in the functions of 50S ribosomal subunits. Proc.Natl.Acad.Sci. U.S. 68, 2932–2936 (1971a).CrossRefGoogle Scholar
  30. FAHNESTOCK, S.R., and M. NOMURA: Activity of ribosomes containing 5S RNA with a chemically modified 3’ terminus. Proc.Natl.Acad.Sci. U.S. 69, 363–365 (1972).CrossRefGoogle Scholar
  31. FERNANDEZ-MUI4OZ, R., R.E. MONRO, R. TORRES-PINEDO, and D. VAZQUEZ: Substrate-and antibiotic-binding sites on the peptidyl transferase centre of Escherichia coli ribosomes. Eur.J.Biochem. 23, 185–193 (1971).CrossRefGoogle Scholar
  32. FERNANDEZ-MUNOZ, R., and D. VAZQUEZ: Binding of puromycin to Escherichia coli ribosomes. Effects of puromycin analogues and peptide bond formation inhibitors. Molec.Biol.Reports 1, 27–32 (1973a).CrossRefGoogle Scholar
  33. FERNANDEZ-MUROZ, R., and D. VAZQUEZ: Kinetic studies of peptide bond formation. Effect of chloramphenicol. Molec.Biol.Reports 1, 75–79 (1973b).CrossRefGoogle Scholar
  34. FERNANDEZ-MUNOZ, R., and D. VAZQUEZ: Quantitative binding of [14C] erythromycin to Escherichia coli ribosomes. J.Antibiotics 26, 107–108 (1973c).Google Scholar
  35. GALE, E.F., E. CUNDLIFFE, P.E. REYNOLDS, M.H. RICHMOND, and M.J. WARING: In: The Molecular Basis of Antibiotic Action, ed. John Wiley and Sons. London-New York (1972).Google Scholar
  36. GOTTESMAN, M.E.: Ribosome peptidyl transferase. In. Methods in Enzymology, vol. XX, ed. K.Moldave and L.Grossman, p. 490–494. New York-London: Academic Press (1971).Google Scholar
  37. GOTTIKH, B.P., L.V. NIKOLAYEVA, A.A. KRAYEVSKI, and L.L. KISSELEV: 3’(2’)-o-aminoacyl nucleotides as polypeptide acceptors at the ribosomal peptidyl transferase center. FEBS Letters 7, 112–113 (1970)PubMedCrossRefGoogle Scholar
  38. HAENNI, A.L., and J. LUCAS-LENARD: Stepwise synthesis of a tripeptide. Proc.Natl.Acad.Sci. U.S. 61, 1363–1369 (1968).CrossRefGoogle Scholar
  39. HARBON, S., and F. CHAPEVILLE: Inhibition of protein synthesis in the reticulocytes by aminoacyl adenosine. Eur. J.Biochem. 13, 375–383 (1970).PubMedCrossRefGoogle Scholar
  40. HARRIS, R.J., P. GREENWELL, and R.H. SYMONS: Affinity labelling of ribosomal peptidyl transferase by a puromycin analogue.Biochem. Biophys.Res.Commun. 55, 117–124 (1973).CrossRefGoogle Scholar
  41. HARRIS, R.J., J.E. HANLON, and R.H. SYMONS: Peptide bond formation on the ribosome. Structural requirements for inhibition of protein synthesis and of release of peptides from peptidyl-tRNA on bacterial and mammalian ribosomes by aminoacyl and nucleotidyl analogues of puromycin. Biochim.Biophys.Acta 240, 244–262 (1971).PubMedGoogle Scholar
  42. HARRIS, R.J., and R.H. SYMONS: A detailed model of the active centre of Escherichia coli peptidyl transferase. Bioorganic Chemistry 2, 286–292 (1973a).CrossRefGoogle Scholar
  43. HARRI, R.J., and R.H. SYMONS: On the molecular mechanism of action of ribosomal peptidyl transferase. Bioorganic Chemistry 2, 266–285 (1973b).CrossRefGoogle Scholar
  44. HENGESH, E.J., and A.J. MORRIS: Inhibition of peptide bond formation by cytidyl derivatives of puromycin. Biochim. Biophys. Acta 299, 654–661 (1973).PubMedGoogle Scholar
  45. HISHIZAWA, T., and S. PESTKA: Studies on the formation of transfer ribonucleic acid-ribosome complexes. XVII. The effect of tRNA on aminoacyl-oligonucleotide binding to ribosomes. Arch.Biochem. Biophys. 147, 624–631 (1971).Google Scholar
  46. HOMAN, H.E., and K.H. NIERHAUS: Ribosomal proteins. Protein compositions of biosynthetic precursors and artifical subparticles from ribosomal subunits in Escherichia coli K12. Eur.J.Biochem. 20, 249–257 (1971).CrossRefGoogle Scholar
  47. HUSSAIN, Z., and J. OFENGAND: Effect of increasing chain length of AA-oligonucleotide acceptors on their reactivity at the peptidyl transferase center in ribosomes and polysomes. Biochem.Biophys. Res.Commun. 49, 1588–1597 (1972).Google Scholar
  48. HUSSAIN, Z., and J. OFENGAND: Terminal oxidation-reduction of yeast phenylalanine tRNA prevents donor and acceptor function at the peptidyl transferase center. Biochem.Biophys.Res.Commun. 50, 1143–1151 (1973).PubMedCrossRefGoogle Scholar
  49. LAI, C.J., and B. WEISBLUM: Altered methylation of ribosomal RNA in an erythromycin-resistant strain of Staphylococcus aureus. Proc.Natl. Acad.Sci. U.S. 68, 856–860 (1971).CrossRefGoogle Scholar
  50. LAI, C.J., B. WEISBLUM, S.R. FAHNESTOCK, and M. NOMURA: Alteration of 23S ribosomal RNA and erythromycin-induced resistance to lincomycin and spiramycin in Staphylococcus aureus J. Mol. Biol. 74, 67–72 (1973).PubMedCrossRefGoogle Scholar
  51. LEICK, V., I. VOTRIN, B.S. COOPERMAN, and A. RICH: Affinity labeling of Escherichia coli peptidyl transferase by antibiotic affinity labels. Abstr. 9th Int.Congress Biochem., p. 191 (1973).Google Scholar
  52. LESSARD, J.L., and S. PESTKA: Studies on the formation of transfer ribonucleic acid-ribosome complexes. XXII. Binding of aminoacyl-oligonucleotides to ribosomes. J. Biol. Chem. 247, 6901–6908 (1972).PubMedGoogle Scholar
  53. MADEN, B.E.H., and R.E. MONRO: Ribosome-catalyzed peptidyl transfer. Effects of cations and pH value. Eur.J.Biochem. 6, 309–316 (1968).PubMedCrossRefGoogle Scholar
  54. MADEN, B.E.H., R.R. TRAUT, and R.E. MONRO: Ribosome-catalysed peptidyl transfer: The polyphenylalanine system. J.Mol.Biol. 35, 333–345 (1968).PubMedCrossRefGoogle Scholar
  55. MAO, J.C.H.: Substrate specificity of Escherichia coli peptidyl transferase at the donor site. Biochem.Biophys.Res.Commun. 52, 595–600 (1973).PubMedCrossRefGoogle Scholar
  56. MERCER, J.F.B., and R.H. SYMONS: Peptidyl-donor substrates for ribosomal peptidyl transferase. Chemical synthesis and biological activity of N-acetyl aminoacyl Di-and Tri-nucleotides. Eur. J. Biochem. 28, 38–45 (1972).PubMedCrossRefGoogle Scholar
  57. MONRO, R.E.: Catalysis of peptide bond formation by 50S ribosomal subunits from Escherichia coli. J.Mol.Biol. 26, 147–151 (1967).PubMedCrossRefGoogle Scholar
  58. MONRO, R.E., J. CERNA, and K.A. MARCKER: Ribosome-catalyzed peptidyl transfer: Substrate specificity at the P-site. Proc.Natl.Acad.Sci. U.S. 61, 1042–1049 (1968).CrossRefGoogle Scholar
  59. MONRO, R.E., R. FERNANDEZ-MU1OZ, M.L. CELMA, and D. VAZQUEZ: Mode of action of lincomycin and related antibiotics. In: Drug action and drug resistance in bacteria. 1. Macrolide antibiotics and lincomycin, ed. S. Mitsuhashi, p. 305–336. Tokyo: University of Tokyo Press (1971).Google Scholar
  60. MONRO, R.E., B.E.H. MADEN, and R.R. TRAUT: The mechanism of peptide bond formation in protein synthesis. In: The genetic elements, ed. D. Shugar, p. 179–203. London: Academic Press (1967).Google Scholar
  61. MONRO, R.E., T. STAEHELIN, M.L. CELMA, and D. VAZQUEZ: The peptidyl transferase activity of ribosomes. Cold Spring Harb.Symp.Quant.Bio1. 34, 357–368 (1969).CrossRefGoogle Scholar
  62. MONRO, R.E., and D. VAZQUEZ: Ribosome-catalyzed peptidyl transfer:Effects of some inhibitors of protein synthesis. J.Mol.Biol. 28, 161–165 (1967).PubMedCrossRefGoogle Scholar
  63. NATHANS, D., and A. NEIDLE: Structural requirements for puromycin inhibition of protein synthesis. Nature 197, 1076–1077 (1963).PubMedCrossRefGoogle Scholar
  64. NIERHAUS, D., and K.H. NIERHAUS: Identification of the chloramphenicolbinding protein in Escherichia coli ribosomes by partial reconstitution. Proc.Natl.Acad.Sci. U.S. 70, 2224–2228 (1973).CrossRefGoogle Scholar
  65. NIERHAUS, K.H., and V. MONTEJO: A protein involved in the peptidyl transferase activity of Escherichia coli ribosomes. Proc.Natl.Acad. Sci. U.S. 70, 1931–1935 (1973).CrossRefGoogle Scholar
  66. OHTSUBO, K., P. KADEN, and C. MITTERMAYER: Polyribosomal breakdown in mouse fibroblasts (L-cells) by fusarenon X, a toxic principle isolated from Fusarium nivale. Biochim.Biophys.Acta 287 520–525 (1972).Google Scholar
  67. OTAKA, E., T. ITOH, S. OSAWA, K. TANAKA, and M. TAMAKI: Peptide analyses of a protein component, 50–8, of 50S ribosomal subunit from erythromycin resistant mutants of Escherichia coli and Escherichia freundii. Mol.Gen.Genet. 114, 14–22 (1971).CrossRefGoogle Scholar
  68. OTAKA, E., H. TERAOKA, M. TAMAKI, K. TANAKA, and S. OSAWA: Ribosomes from erythromycin-resistant mutants of Escherichia coli Q13. J. Mol. Biol. 48, 499–510 (1970).PubMedCrossRefGoogle Scholar
  69. PELLEGRINI, M., H. OEN, and C.R. CANTOR: Covalent attachment of a peptidyl transfer RNA analog to the 50S subunit of Escherichia coli ribosomes. Proc.Natl.Acad.Sci. U.S. 69, 837–841 (1972).CrossRefGoogle Scholar
  70. PESTKA, S.: Studies on the formation of transfer ribonucleic acidribosome complexes. X. Phenylalanyl-oligonucleotide binding to ribosomes and the mechanism of chloramphenicol action. Biochem. Biophys.Res.Commun. 36, 589–595 (1969).PubMedCrossRefGoogle Scholar
  71. PESTKA, S.: Inhibitors of ribosome functions. In: Molecular mechanisms of antibiotic action on protein biosynthesis and membranes, eds. E. Munoz, F. Garcia-Ferrandiz and D. Vazquez, p. 160–187. Amsterdam: Elsevier (1972).Google Scholar
  72. PESTKA, S.: Peptidyl-puromycin synthesis on polyribosomes from Escherichia coli. Proc.Natl.Acad.Sci. U.S. 69, 624–628 (1972).CrossRefGoogle Scholar
  73. PESTKA, S., R. GOORHA, H. ROSENFELD, C. NEURATH, and H. HINTIKKA: Studies on transfer ribonucleic acid-ribosome complexes. XX. Peptidylpuromycin synthesis on mammalian polyribosomes. J.Biol.Chem. 247, 4258–4263 (1972a).PubMedGoogle Scholar
  74. PESTKA, S., H. ROSENFELD, R. HARRIS, and H. HINTIKKA: Studies on transfer ribonucleic acid-ribosome complex. XXI. Effect of antibiotics on peptidyl-puromycin synthesis by mammalian polyribosomes. J.Biol. Chem. 247, 6895–6900 (1972b).Google Scholar
  75. PONGS, O., R. BALD, and V.A. ERDMANN: Identification of chloramphenicolbinding protein in Escherichia coli ribosomes by affinity labeling. Proc.Natl.Acad.Sci. U.S. 70, 2229–2233 (1973).CrossRefGoogle Scholar
  76. RYCHLIK, I.: Release of lysine peptides by puromycin from polylysyl transfer RNA in presence of ribosomes. Biochim.Biophys.Acta 114 425–427 (1966).Google Scholar
  77. RYCHLIK, I., J. CERNA, S. CHLADEK, P. PULKRABEK, and J. ZENLICKA: Substrate specificity of ribosomal peptidyl transferase. The effect of the nature of the amino acid side chain on the acceptor activity of 2’(3’)-o-aminoacyladenosines. Eur.J.Biochem. 16, 136–142 (1970).PubMedCrossRefGoogle Scholar
  78. RYCHLIK, I., J. CERNA, S. SHLADEK, J. ZEMLICKA, and Z. HALADOVA: Substrate specificity of ribosomal peptidyl transferase: 2’(3’)-o-aminoacyl nucleosides as acceptors of the peptide chain on the amino acid site. J.Mol.Biol. 43, 13–24 (1969).PubMedCrossRefGoogle Scholar
  79. SHIMIZU, M., T. SAITO, and S. MITSUHASHI: Spiramycin resistance in Staphylococcus aursus. Decrease in spiramycin-accumulation and the ribosomal affinity of spiramycin in resistant staphycococci. J.Antibiotics 23, 63–67 (1970).Google Scholar
  80. SKOGERSON, L., and K. MOLDAVE: Evidence for aminoacyl-tRNA binding, peptide bond synthesis, and translocase activities in the aminoacyl transfer reaction. Arch.Biochem.Biophys. 125, 497–505 (1968a).PubMedCrossRefGoogle Scholar
  81. SKOGERSON, L., and K. MOLDAVE: Evidence for the role of aminoacyl transferase II in peptidyl-transfer ribonucleic acid translocation. J.Biol.Chem. 243, 5361 (1968b).PubMedGoogle Scholar
  82. SONENBERG, N., M. WILCHEK, and A. ZAMIR: Mapping of Escherichia coli ribosomal components involved in peptidyl transferase activity. Proc.Natl.Acad.Sci. U.S. 70, 1423–1426 (1973).CrossRefGoogle Scholar
  83. TANAKA, K., M. TAMAKI, I. ITOH, E. OTAKA, and S. OSAWA: Ribosomes from spiramycin resistant mutants of Escherichia coli Q13. Mol.Gen. Genet. 114, 23–30 (1971).Google Scholar
  84. TRAUT, R.R., and R.E. MONRO: The puromycin reaction and its relation to protein synthesis. J. Mol. Biol. 10, 63–72 (1964).PubMedCrossRefGoogle Scholar
  85. UENO, Y., M. NAKAJIMA, K. SAKAI, K. ISHII, N. SATO, and N. SHIMADA: Comparative toxicology of trichothec mycotoxins: Inhibition of protein synthesis in animal cells. J. Biochem. 74, 285–296 (1973).PubMedGoogle Scholar
  86. VAZQUEZ, D.: The binding of chloramphenicol by ribosomes from Bacillus megaterium. Biochem.Biophys.Res.Commun. 15, 464–468 (1964).PubMedCrossRefGoogle Scholar
  87. VAZQUEZ, D.: Binding of chloramphenicol to ribosomes. The effect of a number of antibiotics. Biochim.Biophys.Acta 114, 277–288 (1966).PubMedGoogle Scholar
  88. VAZQUEZ, D.: Binding to ribosomes and inhibitory effect on protein synthesis of the spiramycin antibiotics. Life Sci. 6, 845–853 (1967).PubMedCrossRefGoogle Scholar
  89. VAZQUEZ, D.: Inhibitors of protein synthesis. FEBS Letters 40 Supplement, 563–584 (1974).Google Scholar
  90. VAZQUEZ, D., E. BATTANER, R. NETH, G. HELLER, and R.E. MONRO: The function of 80S ribosomal subunits and effects of some antibiotics. Cold Spring Harb.Symp.Quant.Biol. 34, 369–375 (1969).PubMedCrossRefGoogle Scholar
  91. VOGEL, Z., A. ZAMIR, and D. ELSON: The possible involvement of peptidyl transferase in the termination step of protein biosynthesis. Biochemistry 8, 5161–5168 (1969).PubMedCrossRefGoogle Scholar
  92. WALLER, J.P. T. ERDOS, F. LEMOINE, S. GUTTMAN, and E. SANDRIN: Inhibition of protein synthesis by aminoacyl 3’(2’)-adenosine. Biochim. Biophys.Acta 119, 566–580 (1966).PubMedGoogle Scholar
  93. WITTMANN, H.G., G. STOFFLER, D. APIRION, L. ROSEN, K. TANAKA, M. TAMAKI, R. TAKATA, S. DEKIO, E. OTAKA, and S. OSAWA: Biochemical and genetic studies on two different types of erythromycin resistant mutants of Escherichia coli with altered ribosomal proteins. Mol.Gen. Genet. 127, 175–189 (1973).Google Scholar
  94. ZAMIR, A., P. LEDER, and D. ELSON: A ribosome-catalyzed reaction between N-formylmethionyl-tRNA and puromycin. Proc.Natl.Acad.Sci. U.S. 56, 1794–1801 (1966).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1975

Authors and Affiliations

  • D. Vazquez
  • M. Barbacid
  • R. Fernandez-Muñoz

There are no affiliations available

Personalised recommendations