Skip to main content

Ribosomal Effects of Thiostrepton and Related Antibiotics

  • Conference paper
Drug Receptor Interactions in Antimicrobial Chemotherapy

Part of the book series: Topics in Infectious Diseases ((TIDIS,volume 1))

  • 63 Accesses

Abstract

Thiostrepton (alias bryamycin) is a polypeptide antibiotic of sixteen residues with several modifications to the amino acids, for example cyclizatior of cysteine residues. A portion of the molecule is cyclic and there is an ester linkage to a terminal quinaldic acid derivative (Anderson et al., 1970). Thiostrepton inhibits protein synthesis on procaryotic ribosomes by binding firmly to the 50s ribosomal subunit (Weisblum & Demohn, 1970a) with 1:1 stoichiometry (Sopori & Lengyel, 1972; Gordon & Highland, 1974) and recently (Highland et al., 1974), ribosomal protein L11 of E. coli was implicated in the thiostreptonbinding reaction. To date however, no detailed analysis of thiostreptonresistant ribosomes has been reported although a mutant of E. coli, resistant to the related antibiotic, thiopeptin, possesses altered 50s ribosomal subunits (Liou et al., 1973). Other antibiotics, chemically related to thiostrepton and thiopeptin, include siomycin and sporangiomycin, and although the complete structure is only available for thiostrepton it is already apparent that this group of compounds have identical (or closely similar) biochemical modes of action. (For a review, see Cundliffe 1972a; also Pirali et al., 1972).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • ANDERSON, B., HODGKIN, D.C. and M.A. WISWAMITRA: The structure of thiostrepton. Nature 225 233–235 (1970).

    Article  PubMed  CAS  Google Scholar 

  • BALLESTA, J.P.G. and D. VAZQUEZ: Elongation factor T-dependent hydrolysis of guanine triphosphate resistant to thiostrepton. Proc. Nat. Acad. Sci. USA 69, 3058–3062 (1972).

    Article  PubMed  CAS  Google Scholar 

  • BENVENISTE, R. and J. DAVIES: Aminoglycoside antibiotic-inactivating enzymes in actinomycetes similar to those present in clinical isolates of antibiotic-resistant bacteria. Proc. Nat. Acad. Sci. USA 70, 2276–2280 (1973).

    Article  PubMed  CAS  Google Scholar 

  • BODLEY, J.W., LIN, L. and J.H. HIGHLAND: Thiostrepton prevents the formation of a ribosome•G factor guanine nucleotide complex. Biochem. Biophys. Research Commun. 41, 1406–1411 (1970).

    Article  CAS  Google Scholar 

  • BODLEY, J.W., ZIEVE, F.J., LIN, L. and S.T. ZIEVE: Formation of the ribosome•G factor-GDP complex in the presence of fusidic acid. Biochem. Biophys. Research Commun. 37, 437–443 (1969).

    Article  CAS  Google Scholar 

  • BROOKES, P., FULLER, A.T. and J. WALKER: Chemistry of micrococcin P. P.rt 1. J. Chem. Soc. p. 689 (1957).

    Google Scholar 

  • BULOCK, J.D.: Intermediary metabolism and antibiotic synthesis. Adv. in App. Microbiol. 3, 293–342 (1961).

    Google Scholar 

  • BURNS, D.J.W. and E. CUNDLIFFE: Bacterial protein synthesis. A novel system for studying antibiotic action in vivo. Eur. J. Biochem. 37, 570–574 (1973).

    Article  PubMed  CAS  Google Scholar 

  • CABRER, B., VAZQUEZ, D. and J. MODOLELL: Inhibition by elongation factor G of aminoacyl-tRNA binding to ribosomes. Proc. Nat. Acad. Sci. USA 69, 733–736 (1972).

    Article  PubMed  CAS  Google Scholar 

  • CANNON, M. and K. BURNS: Modes of action of erythromycin and thiostrepton as inhibitors of protein synthesis. FEBS Lett. 18, 1–5 (1971).

    Article  PubMed  CAS  Google Scholar 

  • CELMA, M.L., VAZQUEZ, D. and J. MODOLELL: Failure of fusidic acid and siomycin to block ribosomes in the pretranslocated state. Biochem. Biophys. Research Commun. 48, 1240–1246 (1972).

    Article  CAS  Google Scholar 

  • CUNDLIFFE, E: The mode of action of thiostrepton in vivo. Biochem. Biophys. Research Commun. 44, 912–917 (1971).

    Article  CAS  Google Scholar 

  • CUNDLIFFE, E.: Antibiotic inhibitors of ribosome function, in Molecular basis of antibiotic action. Authors E.F. Gale, E. Cundliffe

    Google Scholar 

  • P.E. Reynolds, M.H. Richmond and M.J. Waring. Pages 278–379. Wiley and Sons, London (1972a).

    Google Scholar 

  • CUNDLIFFE, E.: The mode of action of fusidic acid. Biochem. Biophys. Research Commun. 46, 1974–1801 (1972b).

    Article  Google Scholar 

  • CUNDLIFFE, E. and K.McQUILLEN: Bacterial protein synthesis: The effects of antibiotics. J. Mol. Biol. 30, 137–146 (1967).

    Article  PubMed  CAS  Google Scholar 

  • GORDON, J. and J.H. HIGHLAND: Binding of thiostrepton to the ribosomes of E. coli Characterization and stoichiometry of binding. J. Biol. Chem. in press (1974).

    Google Scholar 

  • HEATLEY, N.G. and H.M. DOERY: The preparation and some properties of purified micrococcin. Biochem. J. 50, 247–253 (1951).

    PubMed  CAS  Google Scholar 

  • HIGHLAND, J.H., HOWARD, G.A., OCHSNER, E., STÖFFLER, G., HASENBANK, R. and J. GORDON: Identification of the ribosomal protein responsible for the binding of thiostrepton to E. coli ribosomes. J. Biol. Chem. in press (1974).

    Google Scholar 

  • HIGHLAND, J.H., LIN, L. and J.W. BODLEY: Protection of ribosomes from thiostrepton inactivation by the binding of G factor and GDP. Biochemistry 10, 4404–4409 (1971).

    Article  PubMed  CAS  Google Scholar 

  • KINOSHITA, T., LIOU, Y.-F.and N. TANAKA: Inhibition by thiopeptin of ribosomal functions associated with T and G factors. Biochem. Biophys. Research Commun. 44, 859–863 (1971).

    CAS  Google Scholar 

  • KINOSHITA, T., KUWANA, G. and N. TANAKA: Association of fusidic acid sensitivity with G factor in a protein synthesizing system. Biochem. Biophys. Research Commun. 33, 769–773 (1968).

    Article  CAS  Google Scholar 

  • LIOU, Y.-F., KINOSHITA, T., TANAKA, N. and M. Y.SHIKAWA: Studies on the ribosomes of a thiopeptin-resistant mutant of E. coli. J. Antibiotics 26, 711–716 (1973).

    CAS  Google Scholar 

  • MILLER, D.L.: Elongation factors EF-Tu and EF-G interact at related sites on ribosomes. Proc. Nat. Acad. Sci. USA 69, 752–755 (1972).

    Article  PubMed  CAS  Google Scholar 

  • MODOLELL, J., CABRER, B., PARMEGGIANI, A. and D. VAZQUEZ: Inhibition by siomycin and thiostrepton of both aminoacyl-tRNA and factor G binding to ribosomes. Proc. Nat. Acad. Sci. USA 68, 1796–1800 (1971).

    Article  PubMed  CAS  Google Scholar 

  • PESTKA, S.: Thiostrepton: A ribosomal inhibitor of translocation. Biochem. Biophys. Research Commun. 40, 667–674 (1970).

    Article  CAS  Google Scholar 

  • PESTKA, S. and N. BROT: Effect of antibiotics on steps of bacterial protein synthesis: Some new ribosomal inhibitors of translocation. J. Biol. Chem. 246, 7715–7722 (1971).

    PubMed  CAS  Google Scholar 

  • PIRALI, G., LANCINI, G.C., PARISI, B. and F. SALA: Interaction of sporangiomycin with the bacterial ribosome. J. Antibiotics 25, 561–568 (1972).

    CAS  Google Scholar 

  • RICHMAN, N. and J.W. BODLEY: The sites on the 50s ribosomal subunit with which elongation factors Tu and G interact are at least partially identical. Proc. Nat. Acad. Sci. USA 69, 686–689 (1972).

    Article  PubMed  CAS  Google Scholar 

  • RICHTER, D.: Inability of E. coli ribosomes to interact simultaneously with the bacterial elongation factors EF-Tu and EF-G. Biochem. Biophys. Research Commun. 46, 1850–1856 (1972).

    Article  CAS  Google Scholar 

  • SOPORI, M.L. and P. LENGYEL: Components of the 50s ribosomal subunit involved in GTP cleavage. Biochem. Biophys. Research Commun. 46, 238–244 (1972).

    Article  CAS  Google Scholar 

  • SU, T.L.: Micrococcin, an anti-bacterial substance formed by a strain of micrococcus. Brit. J. Exp. Path. 29, 473–481 (1948).

    PubMed  CAS  Google Scholar 

  • TANAKA, K., WATANABE, S., TERAOKA, H. and M. TAMAKI: Effect of siomycin on protein synthetic activity. Biochem. Biophys. Research Commun. 39, 1189–1193 (1970).

    Article  CAS  Google Scholar 

  • WEISBLUM, B7-and V. DEMOHN: Thiostrepton, an inhibitor of 50s ribosome subunit function. Biochem. Biophys. Research Commun. 101, 1073–1075 (1970a).

    CAS  Google Scholar 

  • WEISBLUM., B. and V. DEMOHN: Inhibition by thiostrepton of the formation of a ribosome-bound guanine nucleotide complex. FEBS Lett. 11, 149–152 (1970b).

    Article  PubMed  CAS  Google Scholar 

  • WOODRUFF, H.B.: The physiology of antibiotic production: The role of the producing organism. Symp. Soc. Gen. Microbiol. 16, 22–46 (1966).

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer-Verlag/Wien

About this paper

Cite this paper

Cundliffe, E., Beven, J.E., Dixon, P.D. (1975). Ribosomal Effects of Thiostrepton and Related Antibiotics. In: Drews, J., Hahn, E. (eds) Drug Receptor Interactions in Antimicrobial Chemotherapy. Topics in Infectious Diseases, vol 1. Springer, Vienna. https://doi.org/10.1007/978-3-7091-8405-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-8405-9_12

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-8407-3

  • Online ISBN: 978-3-7091-8405-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics