Advertisement

Altered Methylation of Ribosomal RNA in Erythromycin-Resistant Staphylococcus Aureus

  • Bernard Weisblum
Conference paper
Part of the Topics in Infectious Diseases book series (TIDIS, volume 1)

Abstract

Methylation of 23S ribosomal RNA, a structural component of the 50S ribosome subunit, the receptor for macrolide and lincosamide and streptogramin-B type (“MLS”) antibiotics has been identified as the chemical change responsible for resistance to these antibiotics in clinical isolates of Staphylococcus aureus and Streptococcus pyogenes. In this work, I would like to review microbiological, biochemical, and genetic studies of resistance to these antibiotics. This review is organized under four main headings:
  1. (A)

    Conclusions regarding rRNA methylation and erythromycin resistance.

     
  2. (B)

    A summary of works of previous investigators interpreted in terms of the methylation reaction.

     
  3. (C)

    A summary of work on which the conclusions regarding rRNA methylation are based.

     
  4. (D)

    Epidemiological and clinical implications of these studies.

     

Keywords

Resistant Cell Macrolide Antibiotic Erythromycin Resistance Altered Methylation Adenine Methylation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations used are

MLS

macrolide and lincosamide and streptogramin-B type antibiotics.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BARBER, M. and WATERWORTH, P.M.: Antibacterial activity of lincomycin and pristinamycin: A comparison with erythromycin. Brit. Med. J. 2, 603–606 (1964).PubMedCrossRefGoogle Scholar
  2. BAUER, A.W., KIRBY, W.M.M., SHERRIS, J.C. and TURCK, M.: Antibiotic susceptibility testing by a standardized single disc method. Amer. J. Clin. Pathol. 45, 493–496 (1966).Google Scholar
  3. BOURSE, R. and MONIER, J.: Effect de l’erythromycine sur la croissance de S. aureus “resistant dissocié” en bacteriostase par un autre macrolide ou un antibiotique apparanté. Ann. Inst. Pasteur 110, 67–79 (1967).Google Scholar
  4. CHABBERT, Y.: Antagonisme in vitro entre l’erythromycine et la spiramycine. Ann. Inst. Pasteur 90, 787–790 (1956).Google Scholar
  5. CLEWELL, D.B. and FRANKE, A.E. Characterization of a plasmid determining resistance to erythromycin, lincomycin, and vernamycin Ba in a strain of Streptococcus pyogenes. Antimicrobial Ag. Chemother. 5, 534–537 (1974).Google Scholar
  6. COURVALIN, P.M., CARLIER, C. and CHABBERT, Y.A.: Plasmid-linked tetracycline and erythromycin resistance in group D “Streptococcus”. Ann. Inst. Pasteur 123, 755–759 (1972).Google Scholar
  7. GARROD, L.P.: The erythromycin group of antibiotics. Brit. Med. J. 2, 57–63 (1957).PubMedCrossRefGoogle Scholar
  8. GRIFFITH, L.J., OSTRANDER, W.E., MULLINS, C.G. and BESWICK, D.E.: Drug antagonism between lincomycin and erythromycin. Science 147, 746–747 (1965).PubMedCrossRefGoogle Scholar
  9. HYDER, S.L. and STREITFELD, M.M.: Inducible and constitutive resistance to macrolide antibiotics and lincomycin in clinically isolated strains of Streptococcus pyogenes. Antimicrobial Ag. Chemother. 4, 327–331 (1973).Google Scholar
  10. LAI, C.J.: Ph.D. Thesis. University of Wisconsin, Madison (1972).Google Scholar
  11. LAI, C.J., DAHLBERG, J. and WEISBLUM, B.: Structure of an inducibly methylatable nucleotide sequence in 23S ribosomal ribonucleic acid from erythromycin-resistant Staphylococcus aureus. Biochemistry 12, 457–460 (1973a).PubMedCrossRefGoogle Scholar
  12. LAI, C.J. and WEISBLUM, B.: Altered methylation of ribosomal RNA in an erythromycin-resistant strain of Staphylococcus aureus. Proc. Nat. Acad. Sci. U.S.A. 68, 856–886 (1971).CrossRefGoogle Scholar
  13. LAI, C.J., WEISBLUM, B., FAHNESTOCK, S. and NOMURA, M.: Alteration of 23S ribosomal RNA and erythromycin-induced resistance to lincomycin and spiramycin in Staphylococcus aureus. J. Mol. Biol. 74, 67–72 (1973b).CrossRefGoogle Scholar
  14. NAKAJIMA, Y., INOUE, M., OKA, Y. and YAMGISHI, S.: A mode of resistance to macrolide antibiotics in Staphylococcus aureus. Japan J. Microbiol. 12, 248–250 (1968).Google Scholar
  15. NOVICK, R.P.: Penicillinase plasmids of Staphylococcus aureus. Fed. Proc. 26, 29–38 (1967).PubMedGoogle Scholar
  16. OTAKA, E., TERAOKA, H., TAMAKI, M., TANAKA, K. and OSAWA, S.: Ribosomes from erythromycin-resistant mutant of Escherichia coli. J. Mol. Biol. 48, 499–510 (1970).PubMedCrossRefGoogle Scholar
  17. RUSH, M.G., GORDON, C.N., NOVICK, R.P. and WARNER, R.C.: Penicillinase plasmid DNA from Staphylococcus aureus. Proc. Nat. Acad. Sci. U.S.A. 63, 1304–1310 (1969).CrossRefGoogle Scholar
  18. SAITO, T., SHIMIZU, M. and MITSUHASHI, S.: Macrolide resistance in Staphylococci. Ann. N.Y. Acad. Sci. 182, 267–278 (1972).CrossRefGoogle Scholar
  19. TANAKA, T. and WEISBLUM, B.: Mutant of Staphylococcus aureus with lincomycin-and carbomycin-inducible resistance to erythromycin. Antimicrobial Ag. Chemother. 5, 538–540 (1974).Google Scholar
  20. VAZQUEZ, D.: The Streptogramin family of antibiotics. In: Antibiotics I, Mechanisms of Action ( D. Gottlieb and P.D. Shaw, ed.) Springer-Verlag, Berlin-Heidelberg-New York (1967).Google Scholar
  21. WEAVER, J.R. and PATTEE, P.A.: Inducible resistance to erythromycin in Staphylococcus aureus. J. Bacteriol. 88, 574–580 (1964).PubMedGoogle Scholar
  22. WEISBLUM, B. and DEMOHN, V.: Erythromycin-inducible resistance in Staphylococcus aureus: Survey of antibiotic classes involved. J. Bacteriol. 98, 447–452 (1969).PubMedGoogle Scholar
  23. WEISBLUM, B., SIDDHIKOL, C., LAI, C.J. and DEMOHN, V.: Erythromycin-inducible resistance in Staphylococcus aureus: Requirements for induction. J. Bacteriol. 106, 835–847 (1971).PubMedGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1975

Authors and Affiliations

  • Bernard Weisblum

There are no affiliations available

Personalised recommendations