Some Aspects of the Effects of Endotoxin on the Central Nervous System

  • F. W. Schmahl


Septic shock is mainly caused by endotoxins of gram-negative bacteria. In its terminal stages disturbances of the central nervous system are observed, and the mortality rate is very high, even after treatment with modern antibiotics. Clinical reviews give a mortality rate of up to 80% (1, 26, 28). Septic shock states are mainly caused by the following gram-negative bacteria: Proteus, Escherichia coli, Pseudomonas, Klebsiella, Salmonella, Neisseria, and Aerobacter aerogenes. In view of the high mortality rate, experimental studies on the pathophysiology and therapeutic management of septic shock are of considerable clinical interest.


Cerebral Cortex Cerebral Blood Flow Arterial Blood Pressure Endotoxin Shock Shigella Dysenteriae 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berk, J. L., Hagen, J. F., Dunn, J. M.: Surg. Gynec. Obstet. 130: 1025 (1970).PubMedGoogle Scholar
  2. 2.
    Betz, E., Ingvar, D. H., Lassen, N. A., Schmahl, F. W.: Acta physiol. scand. 67: 1 (1966).PubMedCrossRefGoogle Scholar
  3. 3.
    Braude, A. I.: Absorption, distribution, and elimination of endotoxins and their derivatives. In: Landy, M., Braun, W.: Bacterial endotoxins, p. 98 ( Rutgers, New Brunswick, N. J. 1964 ).Google Scholar
  4. 4.
    Davis, B. D., Dulbecco, R., Eisen, H. N., Ginsberg, H. S., Wood, W. B.: Microbiology. ( Harper and Row, New York/Evanston/London 1969 ).Google Scholar
  5. 5.
    Göing, H: Arb. Paul-Ehrlich-Inst., Frankfurt 57: 80 (1962).Google Scholar
  6. 6.
    Göing, H., Kaiser, P.: Ergebn. Mikrobiol. 39: 243 (1966).Google Scholar
  7. 7.
    Hager, H.: Acta neuropath. 1: 9 (1961).PubMedCrossRefGoogle Scholar
  8. 8.
    Hardaway, R. M.: Syndromes of disseminated intravascular coagulation. With special reference to shock and hemorrhage. (Charles C. Thomas, Springfield, Ill. 1966 ).Google Scholar
  9. 9.
    Hoff, H. F., Gottlob, R., Blümel, G.: Naturwissenschaften 54: 287 (1967).PubMedCrossRefGoogle Scholar
  10. 10.
    Jawetz, E., Melnick, J. L., Adelberg, E. A.: Medizinische Mikrobiologie. ( Springer, Berlin/Heidelberg/New York 1968 ).Google Scholar
  11. 11.
    Karnovsky, M. J: J. Cell Biol. 35: 213 (1967).PubMedCrossRefGoogle Scholar
  12. 12.
    Kroneberg, G., Sandritter, W.: Z. ges. exp. Med. 120: 329 (1953).PubMedCrossRefGoogle Scholar
  13. 13.
    Lübbers, D W.: The oxygen pressure field of the brain and its significance for the normal and critical oxygen supply of the brain. In: Lübbers, D. W., Luft, U. C., Thews, G., Witzleb, E.: Oxygen transport in blood and tissue, p. 124 ( Thieme, Stuttgart 1968 ).Google Scholar
  14. 14.
    Lübbers, D. W.: Intercapillärer O2-Transport und intracelluläre Sauerstoffkonzentration. In: Hess, B., Staudinger, Hj.: Biochemie des Sauerstoffs, p. 67 ( Springer, Berlin/Heidelberg/New York 1968 ).Google Scholar
  15. 15.
    Lübbers, D. W., Ingvar, D., Betz, E., Fabel, H., Kessler, M., Schmahl, F. W.: Pflügers Arch. ges. Physiol. 281: 58 (1964).Google Scholar
  16. 16.
    Lübbers, D. W., Kessler, M.: Oxygen supply and rate of tissue respiration. In: Lübbers, D. W., Luft, U. C., Thews, G., Witzleb, E.: Oxygen transport in blood and tissue, p. 90 ( Thieme, Stuttgart 1968 ).Google Scholar
  17. 17.
    McGrath, J. M., Stewart, G. J.: J. exp. Med. 129: 833 (1969).PubMedCrossRefGoogle Scholar
  18. 18.
    Nowotny, A.: Bact. Rev. 33: 72 (1952).Google Scholar
  19. 19.
    Penner, A., Klein, S. H.: J. exp. Med. 96: 59 (1952).PubMedCrossRefGoogle Scholar
  20. 20.
    Schmahl, F. W.: Regionale Durchblutung und Metabolite des energieliefernden Stoffwechsels in umschriebenen Gewebsarealen - insbesondere des Myokards und der Hirnrinde - unter verschiedenen pathophysiologischen Bedingungen. Habilitationsschrift, Gießen 1972.Google Scholar
  21. 21.
    Schmahl, F. W.: Effects of endotoxin shock on the oxygen supply and the levels of energy-rich phosphates of the cerebral cortex. In: Kessler, M., Bruley, D. F., Clark, L. C., Lübbers, D. W., Silver, I. A., Strauss, J.: Oxygen supply. Theoretical and practical aspects of oxygen supply and microcirculation of tissue, p. 256 ( Urban und Schwarzenberg, München/Berlin/Wien 1973 ).Google Scholar
  22. 22.
    Schmahl, F. W., Betz, E., Talke, H., Hohorst, H. J.: Biochem. Z. 342: 518 (1965).PubMedGoogle Scholar
  23. 23.
    Schmahl, F. W., Betz, E., Dettinger, E., Hohorst, H. J.: Pflügers Arch. ges. Physiol. 292: 46 (1966).Google Scholar
  24. 24.
    Schmahl, F. W., Ohlemutz, A., Huth, K.: Verh. dtsch. Ges. inn. Med. 75: 900 (1969).Google Scholar
  25. 25.
    Schramm, G., Westphal, O., Lüderitz, O.: Z. Naturforsch 7 b: 594 (1952).Google Scholar
  26. 26.
    Shubin, H.: Hemodynamic, respiratory and metabolic changes in bacterial shock. In this volume.Google Scholar
  27. 27.
    Weil, M. H., MacLean, L. D., Spink, W. W., Visscher, M. B.: J. Lab. clin. Med. 48: 661 (1956).PubMedGoogle Scholar
  28. 28.
    Weil, M. H., Shubin, H., Biddle, M: Ann. intern. Med. 60: 384 (1964).PubMedGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1975

Authors and Affiliations

  • F. W. Schmahl

There are no affiliations available

Personalised recommendations