Skip to main content
  • 149 Accesses

Zusammenfassung

Nachdem Turing (1956) auf die Demonstrationsmöglichkeit, daß eine Maschine denken könnte, hinwies, hat dieses altehrwürdige Problem die besten der kreativen Wissenschaftler herauszufordern begonnen (von Neumann 1958; Shklovskii und Sagan 1966; Brillouin 1956). Die Begriffe Denken, Erkennen und Wiedererkennen, Konzeptformation, Problemlösen, induktives und deduktives Schließen, Intelligenz, Planen sowie Einsicht wurden auf zunehmend höherem theoretischen Niveau von zahlreichen Forschern in diesem logisch-mathematischen Kontext untersucht, jedoch nicht so sehr mit der Sprache der Humanpsychologie, wo diese Begriffe doch ihren Ursprung haben. Eine Forschungshauptströmung betonte den dynamischen Erwerbsprozeß von intellektuellen Fähigkeiten und Erkenntniszuständen mittels Ein-Ausgabe. Dies war jener Ansatz, der zu der Entwicklung der Theorie der adaptiven Kontrollsysteme mit Rückkoppelung und Selbstregulierung parallel lief (Wiener 1948; Ashby 1953; Solomonoff 1956), nämlich des Lernens durch induktive Inferenz. Der Ansatz hat aber den Höhepunkt seiner Popularität überschritten und ist nun außer Mode. Trotz eindrucksvoller Belege für ein Lernen durch Rechenanlagen (Uhr 1964; Samuel 1959) dürfte der weitverbreitete und populäre Glaube bestehen, daß nicht genug Ideen darüber vorliegen, wie allgemeine Lernprogramme, die einer Rechnerrealisierung dessen, was wir bei Personen ein Lernen der sophistiziertesten Art nennen, nahe kommen, zu entwerfen sind (wir teilen diesen Glauben nicht und hoffen, den Leser von unserem Standpunkt überzeugen zu können).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Abelson, R. P., Carroll, J. D.: Computer simulation of individual belief systems. Amer. Behay. Scientist 9, 24–30 (1965).

    Article  Google Scholar 

  • Amarel, S.: On the automatic formation of a computer program which represents a theory. In: Self-organizing systems ( Yovits, M., Jacobi, G. T., Goldstein, G. D., Hrsg.). Washington, D.C.: Spartan Books 1964.

    Google Scholar 

  • Amarel, S.: On the mechanization of creative processes. IEEE Spectrum (1966).

    Google Scholar 

  • Amarel, S.: On machine representations of problems of resoning about actions. In: Machine Intelligence 3, 131–170 ( Michie, D., Hrsg.). Edinburgh: Edinburgh University Press 1968.

    Google Scholar 

  • Ash, W. L., Sibley, E. H.: TRAMP: an interpretive associative processor with deductive capabilities. Proc. ACM National Conference (1968).

    Google Scholar 

  • Ashby, R.: Design for a brain. New York: Wiley 1953.

    Google Scholar 

  • Badre, A. N.: On acquiring a representation of ill-defined problems. Dissertation. University of Michigan, Ann Arbor (1973).

    Google Scholar 

  • Barricelli, N. A.: Symbiotic evolution processes realized by artificial methods. Revista Methodos 2, 35–36 (1957).

    Google Scholar 

  • Bell, J. L., Slomson, A. B.: Models and Ultraproducts. Amsterdam: North Holland 1969.

    MATH  Google Scholar 

  • Boulding, K.: The Image. Ann Arbor: University of Michigan Press 1956.

    Google Scholar 

  • Bremermann, H.: The evaluation of intelligence. In: The nervous system as a model of its environment. TR No. 1, USNRO 43200 (1968).

    Google Scholar 

  • Brillouin, L.: Science and information theory. New York: Academic Press 1956.

    MATH  Google Scholar 

  • Bruner, J. S., Goodnow, J. G., Austin, G. A.: A study of thinking. New York: Wiley 1956.

    Google Scholar 

  • Bunge, M.: Scientific Research I: The search for system. Berlin-Heidelberg-New York: Springer 1967.

    MATH  Google Scholar 

  • Bush, V.: As we may think. At. Monthly 176, 101–108 (1945).

    Google Scholar 

  • Carnap, R.: Testability and meaning. Phil. Sci. III(1936).

    Google Scholar 

  • Church, A.: A note on the Entscheidungsproblem. J. of Symbol. Logic 1, 40–41 (1934).

    Article  Google Scholar 

  • Claparede, E.: La genese de l’hypothese. Archives de Psychologie 24, 1–154 (1934).

    Google Scholar 

  • Colby, K. M.: Simulation of change in personal belief systems. Beh. Sci. 12, 248–253 (1967).

    Article  Google Scholar 

  • Culbertson, J. T.: Consciousness and behaviour. Dubuque, Iowa: W. C. Brown 1950.

    Google Scholar 

  • Floyd, R. W.: Assigning meanings to programs. Proc. Symp. Appl. Math., Am. Math. Soc. 19, 19–32 (1967).

    MathSciNet  Google Scholar 

  • Gelernter, H.: Realization of a geometry theorem-proving machine. Proc. Intern. Conf. Inform. Proc. 273–282 (1959).

    Google Scholar 

  • Gelernter, H., Rochester, N.: Intelligent behavior in problem-solving machines. IBM J. Res. and Dev. 2, 336–345 (1968).

    MathSciNet  Google Scholar 

  • Gödel, K.: Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Monatshefte für Mathematik und Physik 88, 173–198 (1931).

    Article  Google Scholar 

  • Goodman, F., Heilprin, L.: Analogy between information retrieval and education. In: Education for information science ( Heilprin, L., et al., Hrsg.). Washington, D.C.: Spartan Books 1965.

    Google Scholar 

  • Green, C. C., Raphael, B.: Research on an intelligent question-answering system. Stanford Res. Inst. Report No. 1, Menlo Park (1967).

    Google Scholar 

  • Greene, P.: An approach to computers that perceive, learn and reason. Proc. West. J. Comput. Conf. 181–186 (1959).

    Google Scholar 

  • Griswold, R. E., Poage, J. G., Polonsky, I. P.: The SNOBOL4 programming language. Englewood Cliffs: Prentice Hall 1968.

    Google Scholar 

  • Hadamard, J.: The psychology of invention in the mathematical field. Princeton: Princeton University Press 1945.

    MATH  Google Scholar 

  • Hamburger, H. J.: On the learning of three classes of transformational components. Dissertation. University of Michigan, Ann Arbor (1971).

    Google Scholar 

  • Harrah, D.: Communication: a logical model. Cambridge, Mass MIT Press 1963.

    Google Scholar 

  • Hebb, D. O.: The organization of behavior. New York: Wiley 1949.

    Google Scholar 

  • Hull, C. L.: Quantitative aspects of the evolution of concepts. Psychol. Monograph 28, 1, No. 123.

    Google Scholar 

  • Illich, I.: The futility of schooling in latin america. Saturday Review, April 1968.

    Google Scholar 

  • Kac, M., Ulam, S.: Mathematics and logic. New York: Praeger 1969.

    Google Scholar 

  • Knuth, D. E.: The art of computer programming, Bd. 1. Reading, Mass.: Addison Wesley 1968.

    Google Scholar 

  • Kochen, M.: An information-theoretic model of organization. Trans. IRE. PGIT-4, 67 (1954).

    Google Scholar 

  • Kochen, M.: Organized systems with discrete information transfer. General Systems Yearbook (1958).

    Google Scholar 

  • Kochen, M.: Extension of Moore-Shannon model for relay circuits. IBM J. Res. and Dev. 8, 169 (1959).

    MathSciNet  Google Scholar 

  • Kochen, M.: An experimental study of strategies in hypothesis-formation by computers. Trans. 4th Sympos. on Inf. Th. (1960a).

    Google Scholar 

  • Kochen, M.: Cognitive mechanisms. IBM Report RAP-16 (1960b).

    Google Scholar 

  • Kochen, M., MacKay, D. M., Maron, M. E., Scriven, M., Uhr, L.: Computers and comprehension. In: The Growth of Knowledge ( Kochen, M., Hrsg.). New York: Wiley 1967.

    Google Scholar 

  • Kochen, M.: Adaptive mechanisms in digital concept processing. Proc. Joint Conf. on Autom. Control 49–59 (1962a).

    Google Scholar 

  • Kochen, M.: Some mechanisms in hypothesis-selection. Proc. Sympos. Math. Theory of Automata 593–613 (1962b).

    Google Scholar 

  • Kochen, M. (Hrsg.): The growth of knowledge. New York: Wiley 1967.

    Google Scholar 

  • Kochen, M.: Automatic question-answering of english-like questions about arithmetic. Proc. Purdue Centennial Year Symp. on Inf. Processing (1969a).

    Google Scholar 

  • Kochen, M.: Automatic question-answering of english-like questions about simple diagrams. J. Ass. Comput. Mach. 16, 26–48 (1969b).

    Article  MATH  Google Scholar 

  • Kochen, M.: Experiments with programmed learning as a new literary form. J. of Chem. Documentation 9, 10 (1969c).

    Article  Google Scholar 

  • Kochen, M.: Stability in the growth of knowledge. Amer. Document 20, 187 (1969d).

    Google Scholar 

  • Kochen, M.: Fast accumulation and intellectual bridge-building as complementary processes. Report NSF-GN716, University of Michigan, Ann Arbor (1970).

    Google Scholar 

  • Kochen, M.: WISE: a world information synthesis and encyclopaedia. Journal of Documentation 28, 322–343 (1972).

    Article  Google Scholar 

  • Kochen, M.: Representations and algorithms for cognitive learning. Unveröffentlichtes Manuskript. University of Michigan, Ann Arbor (1973).

    Google Scholar 

  • Kochen, M., Dreyfuss-Raimi, G.: An experiment in teaching college mathematics. International Journal of Mathematical Education in Science and Technology 3, 315–328 (1972).

    Article  Google Scholar 

  • Köhler, W.: The mentality of apes. New York: Harcourt, Brace 1926.

    Google Scholar 

  • Kuhn, T.: The structure of scientific revolutions. Chicago: University of Chicago Press 1962.

    Google Scholar 

  • Lederberg, J., Feigenbaum, E. A.: Mechanization of inductive inference in organic chemistry. In: Formal representations for human judgement ( Kleinmuntz, B., Hrsg.). New York: Wiley 1968.

    Google Scholar 

  • MacKay, D. M.: The epistemological problem for automata. In: Automata Studies. Princeton: Princeton University Press 1956.

    Google Scholar 

  • McCarthy, J.: Programs with common sense. In: Mechanization of Thought Processes, 75–84. London: Her Majesty’s Stationary Office 1959.

    Google Scholar 

  • McCulloch, W. S.: Embodiments of mind Cambridge, Mass.: MIT Press 1970.

    Google Scholar 

  • Mendelson, E.: Introduction to mathematical logic. Princeton: Van Nostrand 1964.

    Google Scholar 

  • Menzel, W.: Theorie der Lernsysteme. Berlin-Heidelberg-New York: Springer 1970.

    MATH  Google Scholar 

  • Michie, D., Dale, E. (Hrsg.): Machine Intelligence 2, IX. Edinburgh: Edinburgh University Press 1966.

    Google Scholar 

  • Miller, G. A., Galanter, E. H., Pribram, K.: Plans and the structure of behavior. New York: Henry Holt 1960.

    Book  Google Scholar 

  • Minsky, M.: Steps toward artificial intelligence. In: Computers and Thought ( Feigenbaum, E. A., Feldman, J., Hrsg.). New York: McGraw-Hill 1963.

    Google Scholar 

  • Minsky, M.: Form and content in computer science. J. Ass. Comput. Mach. 17, 197–215 (1970).

    Article  MATH  Google Scholar 

  • Moore, E. F., Shannon, C. E.: Reliable circuits using less reliable relays. J. Franklin Inst. 262, 191–208, 281–297 (1956).

    Google Scholar 

  • Mowrer, O. H.: Learning theory and behavior. New York: Wiley 1961.

    Google Scholar 

  • Mowshowitz, A.: Entropy and the complexity of graphs. Dissertation. University of Michigan, Ann Arbor (1967).

    Google Scholar 

  • Myhill, J.: Some philosophical implications of mathematical logic. Rev. Metaphysics 6, 105–198 (1952).

    Google Scholar 

  • Newell, A.: The chess machine: an example of dealing with a complex task by adaptation. Proc. WJCC (1955).

    Google Scholar 

  • Newell, A.: On the representation of problems. Report Carnegie Institute of Technology, Pittsburgh (1966).

    Google Scholar 

  • Newell, A., Ernst, G.: The search for generality. Proc. IFIP Congress 65, I, 17–24 (1965).

    Google Scholar 

  • ewell, A., Shaw, J. C.: Programming the logic theory machine. Proc. Western Joint Comput. Conf. 230–240 (1957).

    Google Scholar 

  • Newell, A., Shaw, J. C., Simon, H. A.: Chess playing programs and the problem of complexity. IBM J. Res. and Dev. 2, 320–335 (1958).

    MathSciNet  Google Scholar 

  • Newell, A., Simon, H. A.: The simulation of human thought. RAND Report P-1734, Santa Monica: RAND Corporation 1959.

    Google Scholar 

  • Newell, A., Simon, H.: Human problem solving. Englewood Cliffs: Prentice Hall 1972.

    Google Scholar 

  • Newman, C., Uhr, L.: Discovery procedures for game playing models. 20th ACM Nat. Conf. (1967).

    Google Scholar 

  • Nilsson, N. J.: Learning machines. New York: McGraw-Hill 1965.

    MATH  Google Scholar 

  • O’Connell, J. P., Fubini, E. A., McKay, K. A., Hillier, J., Hollomon, J. H.: Electronically expanding the citizen’s worlds. IEEE Spectrum 30–39 (1969).

    Google Scholar 

  • Piaget, J.: Logic and psychology. Manchester: Manchester University Press 1953.

    Google Scholar 

  • Piaget, J.: The origins of intelligence in children. International University Press 1952.

    Google Scholar 

  • Platt, J.: What we must do. Science 166, 1115–1121 (1969).

    Article  Google Scholar 

  • Poincaré, H.: Science and method. New York: Dover 1914.

    MATH  Google Scholar 

  • Plya, G.: Patterns of plausible inference. Princeton: Princeton University Press 1954.

    Google Scholar 

  • Raphael, B.: SIR: a computer program for semantic information retrieval. Proc. AFIPS Fall Joint Computer Conference, 577–589 (1964).

    Google Scholar 

  • Reichenbach, H.: Experience and prediction. Chicago: Chicago University Press 1938.

    Book  Google Scholar 

  • Rosenblatt, F.: Principles of neurodynamics. Washington, D.C.: Spartan Books 1962.

    MATH  Google Scholar 

  • Roosen-Runge, P.: An algebraic description of access and control in information processing systems. Dissertation. University of Michigan, Ann Arbor 1967.

    Google Scholar 

  • Russell, B.: Human knowledge: its scope and limits London: Allen and Unwin 1948.

    Google Scholar 

  • Samuel, A.: Some studies in machine learning using the game of checkers. IBM J. Res. and Dev. 3, 211–229 (1959).

    MathSciNet  Google Scholar 

  • Segur, B.: Clustering as a tool for reviewers. Dissertation. University of Michigan, Ann Arbor (1971).

    Google Scholar 

  • Shannon, C. E., Weaver, W.: The mathematical theory of communication. University of Illinois Press 1949.

    Google Scholar 

  • Shannon, C. E.: Programming a computer for playing chess. Phil. Mag. 41, 256–275 (1950).

    MATH  MathSciNet  Google Scholar 

  • Shapiro, M. D.: Bibliography Report S4D12. Bell Laboratories, Holmdel, N. J. (1969).

    Google Scholar 

  • Shklovskii, I. S., Sagan, C.: Intelligent life in the universe. San Francisco: Holden-Day 1966.

    Google Scholar 

  • Simmons, R. F., Burger, J. F., Schwarcz, R. H.: A computational model of verbal understanding. SDC Reports RC-1316, SP-3132. Santa Monica: Systems Development Corporation (1968).

    Google Scholar 

  • Simon, H., Siklossy, L. (Hrsg.): Representation and meaning. Englewood Cliffs: Prentice Hall 1972.

    Google Scholar 

  • Skinner, B. F.: The technology of teaching. New York: Appleton-Century Crofts 1968.

    Google Scholar 

  • Solomonoff, R.: An inductive inference machine. IRE Conventional Record (1956).

    Google Scholar 

  • Stodolsky, D.: The computer as a psychotherapist amplifier, analogy and adjunct. Report Dept. of Comput. Sci., University of Wisconsin (1970).

    Google Scholar 

  • Tarski, A.: Grundlegung der wissenschaftlichen Semantik. Actes du Congres International de Philos. Sci. 3 (1936).

    Google Scholar 

  • Tsetlin, M. L.: Finite automata and models of simple forms of behavior. Russian Math. Surveys 18, 1–27 (1963).

    Article  MATH  Google Scholar 

  • Turing, A. M.: On computable numbers, with application to the Entscheidungsproblem. Proc. London Math. Soc. 42, 230–265 (1936).

    Google Scholar 

  • Turing, A. M.: Can a machine think? In: The world of mathematics ( Newman, J. J., Hrsg.). New York: Simon and Schuster 1956.

    Google Scholar 

  • Uhr, L.: Pattern-string learning programs. Behay. Sci. 9, 3 (1964).

    Google Scholar 

  • Uhr, L., Kochen, M.: MIKROKOSMS and robots. Proc. Spring Joint Computer Conf. (1969).

    Google Scholar 

  • Uhr, L., Vossler, C.: A pattern-recognition program that generates, evaluates and adjusts its own operators. In: Computers and Thought ( Feigenbaum, E. A., Feldman, J., Hrsg.). New York: McGraw-Hill 1963.

    Google Scholar 

  • von Cube, F.: Kybernetische Grundlagen des Lernens und Lehrens. Stuttgart: Klett 1965.

    Google Scholar 

  • von Neumann, J.: Probabilistic logic and the synthesis of reliable organisms from unreliable components. In: Automata Studies. Princeton: Princeton University Press 1956.

    Google Scholar 

  • von Neumann, J.: The computer and the brain. New Haven: Yale University Press 1958.

    MATH  Google Scholar 

  • Wiener, N.: Cybernetics. Cambridge, Mass.: MIT Press 1948.

    Google Scholar 

  • Winograd, S., Cowan, J. D.: Reliable computation in the presence of noise. Cambridge, Mass.: MIT Press 1963.

    MATH  Google Scholar 

  • Winograd, T.: Understanding natural language. New York: Academic Press 1972.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer-Verlag/Wien

About this chapter

Cite this chapter

Kochen, M. (1975). Kognitive Lernprozesse: Ein Erklärungsversuch. In: Findler, N.V. (eds) Künstliche Intelligenz und Heuristisches Programmieren. Springer, Vienna. https://doi.org/10.1007/978-3-7091-8389-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-8389-2_13

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-8390-8

  • Online ISBN: 978-3-7091-8389-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics