Advertisement

Regulation Mechanisms of Central and Peripheral Sympathetic Neurons

  • G. Hertting
  • B. Peskar
Part of the Journal of Neural Transmission book series (NEURAL SUPPL, volume 12)

Abstract

For many years, the main interest in mechanisms regulating the activity of peripheral sympathetic neurons has been focussed on the structures which maintain the homoeostasis of blood circulation or adapt the circulation to the momentary needs. The mechanisms for this type of regulation receive their information through pressor-, chemo- or volume receptors. This information is then integrated in central structures, and the efferent impulses adapt the periphery to the specific situation. The peripheral activity of the sympathetic nervous system, however, can in addition be modified by local processes that adjust their activity and function to local needs which had escaped being monitored because they were too specialized to be regulated by an overall adjustment, or even apparently controversial to it. In the last decade the knowledge about these local mechanisms has increased, and some of them will be briefly discussed in this paper.

Keywords

Sympathetic Nerve Transmitter Release Rabbit Heart Acta Physiol Sympathetic Nerve Terminal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bogdanski, D. F., and B. B. Brodie: Role of sodium and potassium ions in storage of norepinephrine by sympathetic nerve endings. Life Sei. 5, 1563–1569 (1966).CrossRefGoogle Scholar
  2. Bogdanski, D. F., and B. B. Brodie: The effects of inorganic ions on the storage and uptake of H3-norepinephrine by rat heart slices. J. Pharmacol. exp. Ther. 165, 181–189 (1969).PubMedGoogle Scholar
  3. Brown, G. L., and J. S. Gillespie: The output of sympathetic transmitter from the spleen of the cat. J. Physiol. 138, 81–102 (1957).PubMedGoogle Scholar
  4. Brown, G. L.: The release and fate of the transmitter liberated by adrenergic nerves. Proc. roy. Soc. B 162, 1–19 (1965).Google Scholar
  5. Davies, B. N., E. W. Horton, and P. G. Witherington: The occurrence of prostaglandin E2 in splenic venous blood of the dog following splenic nerve stimulation. Brit. J. Pharmacol. 32, 127–135 (1968).PubMedGoogle Scholar
  6. Dengler, H. J., H. E. Spiegel, and E. O. Titus: Uptake of tritium-labelled norepinephrine in brain and other tissues of the cat in vitro. Science 133, 1072–1073 (1961).PubMedCrossRefGoogle Scholar
  7. Euler, U. S. v., and P. Hedqvist: Inhibitory action of prostaglandins Ei and E2 on the neuromuscular transmission in the guinea pig vas deferens. Acta physiol. scand. 77, 510–512 (1969).Google Scholar
  8. Farnebo, L. O., and B. Hamberger: Drug- induced changes in the release of (3H)-noradrenaline from field stimulated rat iris. Brit. J. Pharmacol. 43, 97–106 (1971).Google Scholar
  9. Farnebo, L. O., and T. Malmfors: 3H-noradrenaline release and mechanical response in the field stimulated mouse vas deferens. Acta physiol. scand., Suppl. 371, 1–18 (1971).Google Scholar
  10. Ferreira, S. M., S. Moncada, and /. R. Vane: Some effects of inhibiting endogenous prostaglandin formation on the response of the cat spleen. Brit. J. Pharmacol. 47, 48–58 (1973).Google Scholar
  11. Gillmore, N., J. R. Vane, and /. H. Wyllie: Prostaglandins released by the spleen. Nature 218, 1135–1140 (1968).Google Scholar
  12. Häggendal, J.: Some further aspects on the release of the adrenergic transmitter. In: New Aspects of Storage and Release Mechanisms of Catecholamines (Schümann, H. J., and G. Kroneberg), pp. 100–111. Berlin- Heidelberg-New York: Springer. 1970.Google Scholar
  13. Hedqvist, P.: Control by prostaglandin E2 of sympathetic neurotransmission in the spleen. Life Sei. 9, Pt. 1, 269–278 (1970).Google Scholar
  14. Hedqvist, P., and U. S. v. Euler: Prostaglandin controls neuromuscular transmission in guinea pig vas deference. Nature New Biol. 236, 113–115 (1972).Google Scholar
  15. Hedqvist, P., L. Stjärne, and Ä. Wennmalm: Facilitation of sympathetic neurotransmission in the cat spleen after inhibition of prostaglandin synthesis. Acta physiol. scand. 83, 430–432 (1971).Google Scholar
  16. Hedqvist, P.: Prostaglandin induced inhibition of neurotransmission in the isolated guinea pig seminal vesicle. Acta physiol. scand. 84, 506–511 (1972).PubMedCrossRefGoogle Scholar
  17. Hertting, G., and J. Suko: Influence of neuronal and extraneuronal uptake on disposition, metabolism, and potency of catecholamines. Perspectives in Neuropharmacology, pp. 267–300. Oxford University Press. 1972.Google Scholar
  18. Horst, W. D., I.,. Kopin, and E. R. Ramey: Influence of sodium and calcium on norepinephrine uptake by isolated perfused rat hearts. Am. J. Physiol. 215, 817–822 (1968).Google Scholar
  19. Hukovic, S., and E. Muscholl: Die Noradrenalin-Abgabe aus den isolierten Kaninchenherzen bei sympathischer Nervenreizung und ihre pharmako- logische Beeinflussung. Naunyn-Schmiedeberg’s Arch. exp. Path. Phar- makol. 244, 81–96 (1962).CrossRefGoogle Scholar
  20. Iversen, L. L.: The uptake of noradrenaline by the isolated perfused rat heart. Brit. J. Pharmacol. 21, 523–537 (1963).PubMedGoogle Scholar
  21. Iversen, L. L., and E. A. Kravitz: Sodium dependence of transmitter uptake at adrenergic nerve terminals. Mol. Pharmacol. 2, 360–362 (1966).PubMedGoogle Scholar
  22. Junstad, M.3 and A. Wennmalm: Increased renal excretion of noradrenaline in rats after treatment with prostaglandin synthesis inhibitor in- domethacin. Acta physiol. scand. 85, 573–576 (1972).Google Scholar
  23. Kirpekar, S. M., and A. R. Wakade: Factors influencing noradrenaline uptake by the perfused spleen of the cat. J.Physiol. 194, 609–626 (1968).PubMedGoogle Scholar
  24. Kirpekar, S. M., A. R. Wakade, O. S. Steinsland, J. C. Prat, and R. F. Furch- gott: Inhibition of the evoked release of norepinephrine (NE) by sympathomimetic amines. Fed. Proc. 31, 566 Abs. (1972).Google Scholar
  25. hanger, F. 2., E. Adler, M. A. Enero, and F. J. E. Stefano: The role of the alpha receptor in regulating noradrenaline overflow by nerve stimulation. Proc. intern. Union Physiol. Sci. 9, 335 (1971).Google Scholar
  26. Muscholl, E.: Die Hemmung der Noradrenalin-Aufnahme des Gewebes durch Cocain. Arch. exp. Path. Pharmakol. 240, 8 (1960).Google Scholar
  27. Peskar, B., and G. Hertting: Release of prostaglandins from isolated cat spleen by angiotensin and vasopressin. Naunyn-Schmiedeberg’s Arch. Pharmacol. 279, 227–234 (1973).Google Scholar
  28. Potter, W. P. de, J. W. Chubb, A. Put, and A. F. de Schaepdryver: Facilita-tion of the release of noradrenaline and dopamine hydroxylase at low stimulation frequencies by a-blocking agents. Arch. int. Pharmacodyn. 193, 191–197 (1971).Google Scholar
  29. Samuelsson, B., and A. Wennmalm: Increased nerve stimulation induced release of noradrenaline from the rabbit heart after inhibition of prostaglandin synthesis. Acta physiol. scand. 83, 163–168 (1971).PubMedCrossRefGoogle Scholar
  30. Starke, K., H. Montel, and /. Wagner: Effect of phentolamine on nor-adrenaline uptake and release. Naunyn-Schmiedeberg’s Arch. Pharmak. 271, 181–192 (1971).Google Scholar
  31. Starke, K.: Alpha sympathomimetic inhibition of adrenergic and cholinergic transmission in the rabbit heart. Naunyn-Schmiedeberg’s Arch. Pharmacol. 274, 18–45 (1972 a).Google Scholar
  32. Starke, K.: Influence of extracellular noradrenaline on the stimulation- evoked secretion of noradrenaline from sympathetic nerves: evidence for an a-receptor-mediated feed-back inhibition of noradrenaline release. Naunyn-Schmiedeberg’s Arch. Pharmacol. 275, 11–23 (1972 b).Google Scholar
  33. Starke, K., and H. Montel: Interaction between indomethacin, oxy- metazoline and phentolamine on the release of 3H-noradrenaline from brain slices. J. Pharm. Pharmac. 25, 758–759 (1973).CrossRefGoogle Scholar
  34. Stjarne, L.: Hyperexcretion of catecholamines induced by indomethacin. Acta physiol. scand. 83, 574–576 (1971).PubMedCrossRefGoogle Scholar
  35. Thoenen, H., A. Huerlimann, and W. Haefely: The effects of sympathetic nerve stimulation on volume, vascular resistance, and norepinephrine output in the isolated perfused spleen of the cat, and its modification by cocaine. J. Pharmacol, exp. Ther. 143, 57–63 (1964).Google Scholar
  36. Wakade, L. G., and R. F. Furchgott: Metabolic requirements for the uptake and storage of norepinephrine by the isolated left atrium of the guinea pig. J. Pharmacol, exp. Ther. 163, 123–135 (1968).Google Scholar
  37. Wennmalm, A., and P. Hedqvist: Prostaglandin Ei as inhibitor of the sympathetic neuroeflfector system in the rabbit heart. Life Sci. 9, Pt. 1, 931–937 (1970).Google Scholar
  38. Wennmalm, A.: Quantitative evaluation of release and reuptake of adrenergic transmitter in the rabbit heart. Acta physiol. scand. 82, 532–538 (1971 a).Google Scholar
  39. Wennmalm, A.: Studies on mechanisms controlling the secretion of neuro-transmitters in the rabbit heart. Acta physiol. scand., Suppl. 365 (1971 b).Google Scholar
  40. Whitby, L. G., G. Hertting, and /. Axelrod: Effect of cocaine on the dis-position of noradrenaline labelled with tritium. Nature 187, 604–605 (1960).Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • G. Hertting
    • 1
  • B. Peskar
    • 1
  1. 1.Department of PharmacologyUniversity of Freiburg i. Br.Freiburg i. Br.Federal Republic of Germany

Personalised recommendations