Radioautography as a Tool for the Study of Putative Neurotransmitters in the Nervous System

  • C. Sotelo
Part of the Journal of Neural Transmission book series (NEURAL SUPPL, volume 12)


The complete demonstration that the already known neurotransmitters in some synapses of the nervous system of invertebrates or in the peripheral nervous system of vertebrates play a similar role in the mammalian central synapses is still missing. Nevertheless the nature of the neurotransmitter present in some central pathways is well established: for instance GABA seems to be the neurotransmitter in the projections from the cerebellar cortex to the deep cerebellar nuclei and the vestibular nuclei (Obata and Takeda, 1969; Fonnum et al., 1970). However, there are only a few central specific synapses in which the exact nature of the neurotransmitter is completely demonstrated (i.e. the cholinergic nature [Eccles et al., 1954] of the synapses on Renshaw cells in the cat spinal cord).


Purkinje Cell Sciatic Nerve Substantia Nigra Axon Terminal Area Postrema 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agid, Y., F. Javoy, J. Glowinski, D. Bouvet, and S. Sotelo; Injection of 6-hydroxydopamine into the substantia nigra of the rat. II. Diffusion and specificity. Brain Res. 58, 291–301 (1973).PubMedCrossRefGoogle Scholar
  2. Bisti, S., G. losif, G. F. Marchesi, and P. Strata: Pharmacological properties of inhibitions in the cerebellar cortex. Exp. Brain Res. 14, 24–37 (1971).Google Scholar
  3. Bloom, F. E.: Ultrastructural identification of catecholamine containing central synaptic terminals. J. Histochem. Cytochem. 21, 333–348 (1973).PubMedCrossRefGoogle Scholar
  4. Bloom, F. E., and L. L. Iversen: Localization of 3H-GABA in nerve terminals of rat cerebral cortex by electron microscopic autoradiography. Nature 229, 628–630 (1971).PubMedCrossRefGoogle Scholar
  5. Bowery, N. G., and D. A. Brown: y-aminobutyric acid uptake by sympathetic ganglia. Nature New Biol. 238, 89–91 (1972).Google Scholar
  6. Dahlstrom, A.: Observations on the accumulations of noradrenaline in the proximal and distal parts of peripheral adrenergic nerves after com-pression. J. Anat. (London) 99, 677–689 (1965).Google Scholar
  7. Dahlstrom, A., and K. Fuxe: Evidence for the existence of monoamine- containing neurons in the central nervous system. Acta physiol. Scand. suppl. 232, 62, 6–55 (1964).Google Scholar
  8. Descarries, L., and B. Droz: Intraneural distribution of exogenous nor-epinephrine in the central nervous system of the rat. J. Cell Biol. 44, 385–399 (1970).PubMedCrossRefGoogle Scholar
  9. Eccles, J. C., P. Fatt, and K. Koketsu: Cholinergic and inhibitory synapses in a pathway from motor-axon collaterals to motoneurones. J. Physiol. (London) 216, 524–562 (1954).Google Scholar
  10. Fonnum, F., J. Storm-Mathisen, and F. Walberg: Glutamate decarboxylase in inhibitory neurons. A study of the enzyme in Purkinje cell axons and boutons in the cat. Brain Res. 20, 259–275 (1970).PubMedCrossRefGoogle Scholar
  11. Geffen, L. B., L. Descarries, and B. Droz: Intraaxonal migration of nor-epinephrine injected into the coeliac ganglion of cats: radioautographic study of the proximal segment of constricted splenic nerves. Brain Res. 35, 315–318 (1971).Google Scholar
  12. Glowinksi, J., I. J. Kopin, and J. Axelrod: Metabolism of 3H-norepinephrine in the rat brain. J. Neurochem. 12, 25–30 (1965).CrossRefGoogle Scholar
  13. Grillo3 M. A.: C. Electron microscopy of sympathetic tissues. Pharmacol. Rev. 18, 387–399 (1966).PubMedGoogle Scholar
  14. Gulley, R. L., and R. L. Wood: The fine structure of the neurons in the rat substantia nigra. Tissue and Cell 3, 675–690 (1971).PubMedCrossRefGoogle Scholar
  15. Hattori, T., P. L. McGeer, H. C. Fihiger, and E. G. McGeer: On the source of GABA-containing terminals in the substantia nigra. Electron microscopic autoradiographic and biochemical studies. Brain Res. 54, 103 to 114 (1973).Google Scholar
  16. H ok felt, T., and A. Ljungdahl: Cellular localization of labeled gamma- aminobutyric (3H-GABA) in rat cerebellar cortex; and autoradiographic study. Brain Res. 22, 391–396 (1970).Google Scholar
  17. H ok felt, T., and A. S. Ljungdahl: Histochemical determination of neuro-transmitter distribution. In: Neurotransmitters (Res. Publ. A.R.N.M.D.) Vol. 50, pp. 1–55 (1972 a).Google Scholar
  18. H ok felt, T., and A. Ljungdahl: Application of cytochemical techniques to the study of suspected transmitter substances in the nervous system. In: Studies of Neurotransmitters at the Synaptic Level (Costa, E., Iversen, L. L., and R. Paoletti), pp. 1–35 (Advances in Biochemical Psychopharmacology, Vol.6). New York: Raven Press. 1972 b.Google Scholar
  19. H ok felt, T., and A. Ljungdahl: Autoradiographic identification of cerebral and cerebellar cortical neurons accumulating labeled Gamma-amino- butyric acid (3H-GABA). Exp. Brain Res. 14, 354–362 (1972 c).Google Scholar
  20. Iversen, L. L.: The uptake and storage of noradrenaline in sympathetic nerves, p. 253. Cambridge University Press. 1967.Google Scholar
  21. Iversen, L. L., and F. E. Bloom: Studies of the uptake of 3H-GABA and 3H-glycine in slices and homogenates of rat brain and spinal cord by electron microscopic autoradiography. Brain Res. 41, 131–143 (1972).PubMedCrossRefGoogle Scholar
  22. Iversen, L. L., J. S. Kelly, M. Minchin, F. Schon, and S. R. Snodgrass: Role of amino acids and peptides in synaptic transmission. Brain Res. 62, 567–576 (1973).PubMedCrossRefGoogle Scholar
  23. Iversen, L. L., and M. J. Neal: The uptake of 3H-GABA by slices of rat cerebral cortex. J. Neurochem. 15, 1141–1149 (1968).PubMedCrossRefGoogle Scholar
  24. Kawamura, H., and L. Provini: Depression of cerebellar Purkinje cells by microiontophoretic application of GABA and related amino acids. Brain Res. 24, 293–304 (1970).PubMedCrossRefGoogle Scholar
  25. Ljungdahl, A., A. Seiger, T. H ok felt, and L. Olson: 3H-GABA uptake in growing cerebellar tissue: autoradiography of intraocular transplants. Brain Res. 61, 379–384 (1973).Google Scholar
  26. Neal, M. J., and L. L. Iversen: Subcellular distribution of endogenous and 3H-y-aminobutyric acid in rat cerebral cortex. J. Neurochem. 16, 1245 to 1252 (1969).Google Scholar
  27. Neal, M. J., and L. L. Iversen: Autoradiographic localization of 3H-GABA in rat retina. Nature New Biology 235, 217–218 (1972).PubMedCrossRefGoogle Scholar
  28. Obata, K., and K. Takeda: Release of y-aminobutyric acid into the fourth ventricle induced by stimulation of the cat’s cerebellum. J. Neurochem. 16, 1043–1047 (1969).PubMedCrossRefGoogle Scholar
  29. Richards, J. G., and J. P. Trancer: The ultrastructural localization of amine storage sites in the central nervous system with the aid of a specific marker, 5-hydroxydopamine. Brain Res. 17, 463–469 (1970).PubMedCrossRefGoogle Scholar
  30. Roberts, E., and K. Kuriyama: Biochemical-physiological correlations in studies of the y-aminobutyric acid system. Brain Res. 8, 1–35 (1968).PubMedCrossRefGoogle Scholar
  31. Schori, F., and L. L. Iversen: Selective accumulation of 3H-GABA by stellate cells in rat cerebellar cortex in vivo. Brain Res. 42, 503–507 (1972).CrossRefGoogle Scholar
  32. Sotelo, C.: The fine structural localization of norepinephrine-3H in the substantia nigra and area postrema of the rat. An autoradiographic study. J. Ultrastruct. Res. 36, 824–841 (1971).PubMedCrossRefGoogle Scholar
  33. Sotelo, C., A. Privât, and M. J. Drian: Localization of 3H-GABA in tissue culture of rat cerebellum using electron microscopy radioautography. Brain Res. 45, 302–308 (1972).PubMedCrossRefGoogle Scholar
  34. Sotelo, C., and J. Taxi: On the axonal migration of catecholamines in constricted sciatic nerve of the rat. A radioautographic study. 2. Zell- forsch. 138, 345–370 (1973).Google Scholar
  35. Taxi, J.: Contribution à l’étude des connexions des neurones moteurs du système nerveux autonome. In: Annales des Sciences Naturelles, 12e série, tome VII, Fasc. 3, pp. 413–674. Paris: Masson Ed. 1965.Google Scholar
  36. Taxi, J.: Morphological and cytochemical studies on the synapses in the autonomie nervous system. In: Progress in Brain Research, Vol. 31, pp. 17–20. Amsterdam: Elsevier. 1969.Google Scholar
  37. Taxi, J., and B. Droz: Radioautographic study of the accumulation of some biogenic amines in the autonomic nervous system. In: Symposium of the International Society for Cell Biology, Vol. 8, pp. 175–190. New York: Academic Press. 1969.Google Scholar
  38. Taxi, J., J. Gautron, and P. UHermite: Données ultrastructurales sur une éventuelle modulation adrénergique de l’activité du ganglion cervical supérieur du Rat. C.R. Acad. Se. Paris, t. 269, série D, 1281–1284 (1969).Google Scholar
  39. Taxi, J., and C. Sotelo: Cytological aspects of the axonal migration of catecholamines and of their storage material. Brain Res. 62, 431–437 (1973).PubMedCrossRefGoogle Scholar
  40. Wolfe, D. E., L. T. Potter, K. C. Richardson, and J. Axelrod: Localizing tritiated norepinephrine in sympathetic axons by electron microscopy autoradiography. Science 138, 440–442 (1962).PubMedCrossRefGoogle Scholar
  41. Young, J. A. C., D. A. Brown, J. S. Kelly, and F. Schon: Autoradiographic localization of sites of 3H-aminobutyric acid accumulation in peripheral autonomic ganglia. Brain Res. 63, 479–486 (1973).PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • C. Sotelo
    • 1
  1. 1.Laboratoire de NeuromorphologieU-106 I.N.S.E.R.M.ParisFrance

Personalised recommendations