The Biochemistry of Cholinergic Synapses as Exemplified by the Electric Organ of Torpedo

  • V. P. Whittaker
  • H. Zimmermann
  • M. J. Dowdall
Part of the Journal of Neural Transmission book series (NEURAL SUPPL, volume 12)


The electric organ of Torpedo (Fig. 1) consists of two masses of gelatinous tissue disposed one on each side of the head, having a honeycomb structure when viewed from above. Each “cell” of the honeycomb is in reality a vertical stack of electroplaque cells, each profusely innervated on the lower (ventral) surface; when the electric nerves discharge synchronously, the postjunctional potentials thus generated summate to give sizeable electric discharges (25–35 v in T. marmorata).


Synaptic Vesicle Choline Acetyltransferase Electric Organ Single Shock Vesicle Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bloom, E. F., L. L. Iversen, and F. O. Schmitt: Macromolecules in synaptic function. Neurosci. Res. Bull. 8 (1970).Google Scholar
  2. Changeux, J-P.: Études sur le mécanisme moléculaire de la résponse d’une membrane excitable aux agents cholinergiques. In: Le Système Cholin- ergique en Anesthésiologie et en Réanimation (Nahas G-G., J.-C. Sala- magne, P.Viars, and G.Vourc’h), pp. 99–112. Paris: Librairie Arnette. 1972.Google Scholar
  3. Da Prada, M., and A. Pletscher: Isolated 5-hydroxytryptamine organelles of rabbit blood platelets: physiological properties and drug-induced changes. Brit. J. Pharmacol. 4, 591–597 (1968).Google Scholar
  4. de Potter, W. P., I. W. Chubb, and A. F. de Schaepdryver: Pharmacological aspects of peripheral noradrenergic transmission. Arch. int. Phar- macodyn. Ther. 196 (suppl.), 258–287 (1972).Google Scholar
  5. de Potter, W. P., D. P. Smith, and A. F. de Schaepdryver: Subcellular fractionation of splenic nerve: ATP, chromogranin A and dopamine -hydroxylase in noradrenergic vesicles. Tissue and Cell 2, 529–546 (1970).Google Scholar
  6. Dowdall, M.]., A. F. Boy ne, and V. P. Whittaker: Adenosine triphosphate: a constituent of cholinergic synaptic vesicles. Biochem. J. 140, 1–12 (1974).Google Scholar
  7. Fritsch, G.: Die elektrischen Fische. Zweite Abtheilung: Die Torpedineen. Leipzig: von Veit & Co. 1890.Google Scholar
  8. Geffen, L. B., and B. G. Livett: Synaptic vesicles in sympathetic neurones. Physiol. Rev. 51, 98–157 (1971).Google Scholar
  9. Heilbronn, E., and H. Petterson: Acetylcholine and related enzymes in normal and ligated cholinergic nerves from Torpedo marmorata. Acta Physiol. Scand. 88, 590 (1973).PubMedCrossRefGoogle Scholar
  10. Hillarp, N.-Â.: Adenosine phosphates and inorganic phosphate in the adrenaline and noradrenaline containing granules of the adrenal medulla. Acta Physiol. Scand. 42, 321–332 (1958).Google Scholar
  11. Karlsson, E., E. Heilbronn, and L. Widlund: Isolation of the nicotinic acetylcholine receptor by biospecific chromatography on insolubilized Naja naja neurotoxin. FEBS Letters 28, 107 (1972).PubMedCrossRefGoogle Scholar
  12. Kdsa, P., S. P. Mann, S. Karcsu, L. Toth, and 5. Jordan: Transport of choline acetyltransterase and acetylcholinesterase in the rat sciatic nerve: a biochemical and electron histochemical study. J. Neurochem. 21, 431 to 436 (1973).Google Scholar
  13. Miledi, R., P. Molinoff, and L. T. Potter: Isolation of the cholinergic receptor protein of Torpedo electric tissue. Nature 229, 554 (1971).PubMedCrossRefGoogle Scholar
  14. Saunders, N. R., K. Dziegielewska, C. J. Haggendal, and A. B. Dahlstrom: Slow accumulation of choline acetyltransferase in crushed sciatic nerves of the rat. J. Neurobiol. 4, 95–103 (1973).PubMedCrossRefGoogle Scholar
  15. Schmidt, J., and M. A. Raftery: Use of affinity chromatography for acetyl-choline receptor purification. Biochem. Biophys. Res. Comm. 49, 572 (1972).PubMedCrossRefGoogle Scholar
  16. Schümann, H.].: Über den Noradrenalin- und ATP-Gehalt sympathischer Nerven. Archiv, exp. Path. u. Pharmacol. 233, 296–300 (1958).Google Scholar
  17. Smith, A. D.: Biochemistry of adrenal chromaffin granules. In: The Inter-action of Drugs and Subcellular Components of Animal Cells & Campbell, P. N., ed.), pp. 239–292. Boston: Little Brown & Co. 1968.Google Scholar
  18. Soifer, D., and V. P. Whittaker: Morphology of subcellular fractions derived from the electric organ of Torpedo. Biochem. J. 128, 845–846 (1972).PubMedGoogle Scholar
  19. Ulmar, G., and V. P. Whittaker: Immunological approach to the character-ization of cholinergic vesicular protein. J. Neurochem. 22, 452–455 (1974 a).Google Scholar
  20. Ulmar, G., and V. P. Whittaker: Immunohistochemical localization and immunoelectrophoresis of cholinergic synaptic vesicle protein con-stituents from the Torpedo. Brain Res. 71, 155–159 (1974 b).Google Scholar
  21. Whittaker, V. P.: Origin and function of synaptic vesicles. Ann. N.Y. Acad. Sei. 183, 21–32 (1971).CrossRefGoogle Scholar
  22. Whittaker, V. P.: The storage of acetylcholine in presynaptic nerve ter-minals. In: The Scientific Basis of Medicine Annual Reviews 1973 (Gilliland, L, and M. Peden), pp. 17–31. London: Athlone Press. 1973 a.Google Scholar
  23. Whittaker, V. P.: The structural and chemical properties of synaptic vesicles. In: Proteins of the Nervous System (Schneider, D., ed.), pp. 155 to 169. New York: Raven Press. 1973 b.Google Scholar
  24. Whittaker, V. P.: Molecular organization of the cholinergic vesicle. Adv. Cytopharmacol. 2, 311–317 (1974).PubMedGoogle Scholar
  25. Whittaker, V. P., and Dowdall, M..: Constituents of cholinergic vesicles. In: La Transmission cholinergique de l’Excitation (Fardeau, M., M. Israel, and R. Manaranche), pp. 101–117. Paris: Editions INSERM. 1973.Google Scholar
  26. Whittaker, V. P., M. J. Dowdall, and A. F. Boyne: The storage and release of acetylcholine by cholinergic nerve terminals: recent results with non- mammalian preparations. Biochem. Soc. Symp. 36, 49–68 (1972 a).Google Scholar
  27. Whittaker, V. P., W. B. Essman, and G. H. C. Dowe: The isolation of pure cholinergic synaptic vesicles from the electric organs of elasmobranch fish of the family Torpedinidae. Biochem. J. 128, 833–846 (1972 b).Google Scholar
  28. Whittaker, V. P., M. J. Dowdall, G. H. C. Dowe, R. M. Facino, and I. Scotto: Proteins of cholinergic synaptic vesicles from the electric organ of Torpedo: characterization of a low molecular weight protein. Brain Res. 75, 115–131 (1974).PubMedCrossRefGoogle Scholar
  29. Widlund, L., K. A. Karlsson, A. Winter, and E. Heilbronn: Immuno¬chemical studies on cholinergic synaptic vesicles. J. Neurochem. 22, 451 to 456 (1974).Google Scholar
  30. Timmermann, H., and V. P. Whittaker: Evidence for axonal flow of acetyl¬choline (ACh) in cholinergic nerves. Abstr. 4th int. Meet. int. Soc. Neurochem. Tokyo, p. 245 (abstr. no. 223) (1973 a). Zimmermann, Hand V. P. Whittaker: The effect of stimulation on the composition and yield of cholinergic synaptic vesicles. Abstr. 4th int. Meet. int. Soc. Neurochem. Tokyo, p. 321 (abstr. no. 343) (1973 b).Google Scholar
  31. Zimmermann, H., and V. P. Whittaker: Effect of electrical stimulation on the yield and composition of synaptic vesicles from the cholinergic synapses of the electric organ of Torpedo: a combined biochemical, electrophysiological and morphological study. J. Neurochem. 22, 435 to 451 (1974 a).Google Scholar
  32. Zimmermann, H., and V. P. Whittaker: Different recovery rates of the electrophysiological, biochemical and morphological parameters in the cholinergic synapses of the Torpedo electric organ after stimulation. J. Neurochem. 22, 1109–1114 (1974 b).Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • V. P. Whittaker
    • 1
  • H. Zimmermann
    • 1
  • M. J. Dowdall
    • 1
  1. 1.Abteilung für NeurochemieMax-Planck-Institut für biophysikalische ChemieGöttingenFederal Republic of Germany

Personalised recommendations