Advertisement

Mass Shell and Non-Locality in Electrodynamics

  • F. Rohrlich
Conference paper
Part of the Acta Physica Austriaca book series (FEWBODY, volume 13/1974)

Abstract

Much criticism can be brought against our present theory of electromagnetic interactions. Most of it can be summarized as follows.

Keywords

Field Equation Coherent State Commutation Relation Free Field Mass Shell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. P. Feynman, Science 153, 699 (1966).CrossRefADSGoogle Scholar
  2. 2.
    F. Rohrlich, Classical Charged Particles, Addison-Wesley Publishing Co., Reading, Mass. 1965.MATHGoogle Scholar
  3. 3.
    F. Rohrlich, Phys. Rev. Lett. 12, 375 (1964); see also ref. 2.CrossRefMATHADSMathSciNetGoogle Scholar
  4. 4.
    H. Tetrode, 2. Phys. 10, 317 (1922);CrossRefGoogle Scholar
  5. A. D. Fokker, ibid. 58, 386 (1929);CrossRefGoogle Scholar
  6. J. A. Wheeler, R. P. Feynman, Rev. Mod. Phys. 17, 157 (1945) and 21, 425 (1949).CrossRefMATHADSMathSciNetGoogle Scholar
  7. 5.
    Ref. 2, Section 7–2.Google Scholar
  8. 6.
    P. A. M. Dirac, Proc. Roy. Soc. A 167, 148 (1938).CrossRefADSGoogle Scholar
  9. 7.
    Ref. 2, Section 4–8.Google Scholar
  10. 8.
    F. Strocchi, Phys. Rev. D2, 2334 (1970).ADSMathSciNetGoogle Scholar
  11. 9.
    I. M. Gel’fand, R. A. Minlos, Z. Ya. Shapiro, Representations of the Rotation and Lorentz Groups and Their Applications, the Macmillan Co., New York, 1963.Google Scholar
  12. 10.
    C. M. Bender, Phys. Rev. 168, 1809 (1968).CrossRefADSGoogle Scholar
  13. 11.
    F. Rohrlich, J. Math. Phys. 5, 324 (1964) and also in Analytic Methods in Mathematical Physics, edited by R. P. Gilbert and R. G. Newton, Gordon and Breach, New York 1970.Google Scholar
  14. 12.
    F. Rohrlich, J. C. Stoddart, J. Math. Phys. 6, 495 (1965);CrossRefMATHADSMathSciNetGoogle Scholar
  15. T. W. Chen, F. Rohrlich, M. Wilner, ibid. 1365 (1966)Google Scholar
  16. 13.
    N. N. Bogoliubov, D. V. Shirkov, Introduction to the Theory of Quantized Fields, Interscience Publishers, Inc. New York, 1959. See also ref. 12.Google Scholar
  17. 14.
    For a review of asymptotic quantum field theory see my Schladming lectures of 1967 (Acta Phys. Austriaca Suppl. IV, 228 (1967); see also the ensuring Theory of the S-operatorGoogle Scholar
  18. F. Rohrlich, Phys. Rev. 183, 1359 (1969)CrossRefMATHADSMathSciNetGoogle Scholar
  19. A. Pagnamenta and F. Rohrlich, Phys. Rev. Dl, 1640 (1970).ADSGoogle Scholar
  20. 15.
    D. Iagolnitzer, H. P. Stapp, Commun. Math. Phys. 14, 15 (1969);CrossRefADSMathSciNetGoogle Scholar
  21. J. Bros, D. Iagolnitzer, Ann. Inst. H. Poincaré A XVIII No. 2 (1973)Google Scholar
  22. 16.
    R. H. Dalitz, Proc. Roy. Soc. (London) A 206, 509 (1951).CrossRefMATHADSGoogle Scholar
  23. 17.
    See for example J. M. Jauch and F. Rohrlich Theory of Photons and Electrons, Addison-Wesley Publishing Company, Reading, Mass. 1955, Eq. (16–8).Google Scholar
  24. 18.
    J. M. Jauch, F. Rohrlich, Hely. Phys. Acta 27, 613 (1954).MATHMathSciNetGoogle Scholar
  25. 19.
    V. Chung, Phys. Rev. 140, lll0 (1965).CrossRefADSGoogle Scholar
  26. 20.
    K.-E. Eriksson, Physica Scripte 1, 3 (1970).CrossRefMATHADSMathSciNetGoogle Scholar
  27. 21.
    T. W. B. Kibble, J. Math. Phys. 9, 315 (1968); Phys. Rev. 173, 1527 (1968); 174, 1882 (1968); 175, 1624 (1968).Google Scholar
  28. 22.
    P. Kulish, L. D. Faddeyev, Theor. and Math. Phys. 4, 745 (1971).CrossRefADSGoogle Scholar
  29. 23.
    D. Zwanziger, Phys. Rev. D7, 1082 (1973).ADSGoogle Scholar
  30. 24.
    The literature on this subject is very extensive. An excellent introduction is given in John R. Klauder and E. C. G. Sudarshan, Fundamentals of Quantum Optics. Extensions to quantum field theory are given in the second reference quoted in (11) and (19)-(22). These references also lead to the earlier literature.Google Scholar
  31. 25.
    See reference (22) and also S. Schweber, 1972 Cargèse Summer School Lecture.Google Scholar
  32. 26.
    J. von Neumann, Comp. Math. 6, 1 (1938).MATHGoogle Scholar
  33. 27.
    J. Dollard, J. Math. Phys. 5, 729 (1964).CrossRefADSMathSciNetGoogle Scholar
  34. 28.
    E. C. G. Stückelberg, Helv. Phys. Acta 19, 241 (1946);Google Scholar
  35. D. Rivier, Helv. Phys. Acta 22, 265 (1949);MATHMathSciNetGoogle Scholar
  36. M. Fierz, Hely. Phys. Acta 23, 731 (1950).MATHMathSciNetGoogle Scholar
  37. 29.
    Attempts to generalize the Wheeler-Feynman theory to OED are not new. We mentioned in particular F. Hoyle and J. V. Narlikar, Ann. Phys. 54, 207 (1969) and 62, 44 (1971); Nature 228, 544 (197o); P. C. W. Davies, J. Phys. A4,836 (1971) and 5, 1025 (1972); Proc. Camb. Phil. Soc. 68, 751 ( 197o ). Although these papers have necessarily certain features in common with our work, the approach taken here is different even though the results are essentially the same. We also note that these authors do not pay attention to the infrared problem.Google Scholar
  38. 30.
    I am indebted to Prof. I. Bialynicki-Birula for a valuable discussion on this point.Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • F. Rohrlich
    • 1
  1. 1.Syracuse UniversitySyracuseUSA

Personalised recommendations