Asymptotic Freedom and Almost-Freedom

  • W. Kummer
Conference paper
Part of the Acta Physica Austriaca book series (FEWBODY, volume 13/1974)


One of the classical ideas in theoretical physics is the generalization of the gauge invariance of the electromagnetic field to vector fields with nonabelian gauge groups [1]. However, it took a long time until the quantization of such fields was carried through consistently for the massless case [2] and until the renormalizability was shown for massive versions [3] if they result from spontaneous symmetry breaking via the Higgs-mechanism [4]. At first this stimulated new interest for models in which a unification of weak and electromagnetic interactions was proposed in terms of nonabelian gauge theories of the photon and to the hypothetical massive vector bosons which mediate weak interactions [5].


Gauge Theory Gauge Group Anomalous Dimension Nonabelian Gauge Theory Nonabelian Gauge Group 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. N. Yang, R. L. Mills, Phys. Rev. 96, 191 (1956).ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    L. D. Faddeev, V. Popov, Phys. Letters 25B, 29 (1967).ADSGoogle Scholar
  3. 3.
    G. Hooft, Nucl. Phys. B35, 167 (1971).ADSCrossRefGoogle Scholar
  4. 4.
    P. W. Higgs, Phys. Letters 12, 132 (1964); Phys. Rev. Lett. 13, 508 (1964); Phys. Rev. 145, 1156 (1966).ADSMathSciNetGoogle Scholar
  5. F. Englert, R. Brout, Phys. Rev. Letters 13, 321 (1964);ADSMathSciNetCrossRefGoogle Scholar
  6. G. S. Guralnik, C. R. Hagen, T. W. B. Kibble,ibid. 13, 585 (1964).ADSGoogle Scholar
  7. 5.
    S. Weinberg, Phys. Rev. Letters 19, 1264 (1967), 27, 1688 (1971);Google Scholar
  8. A. Salam, in “Elementary Particle Physics” (ed. N. Svartholm, Almquist and Wiksells, Stockholm, 1968), p. 367.Google Scholar
  9. 6.
    D. J. Gross, F. Wilczek, Phys. Rev. Letters 30, 1343 (1973);ADSCrossRefGoogle Scholar
  10. N. D. Politzer, Phys. Rev. Letters 30, 1346 (1973).ADSCrossRefGoogle Scholar
  11. 7.
    D. J. Gross, F. Wilczek, Phys. Rev. D8, 3633 (1973) and “Asymptotically Free Gauge Theories II” prep. Princeton Univ.Google Scholar
  12. 8.
    S. Weinberg, Phys. Rev. Letters 31, 494 (1973).ADSCrossRefGoogle Scholar
  13. 9.
    cf. E. Bloom, SLAC-PUB 1319 (Report at Symposium on Electron and Photon Interactions at High Energies, Bonn, August 1973 ).Google Scholar
  14. 10.
    R. P. Feynman, unpublished and Phys. Rev. Letters 23, 1415 (1964).ADSCrossRefGoogle Scholar
  15. 11.
    J. D. Bjorken, Phys. Rev. 179, 1547 (1964).ADSCrossRefGoogle Scholar
  16. 12.
    Y. Frishman, Phys. Rev. Letters 25, 966 (1970);CrossRefGoogle Scholar
  17. R. A. Brandt, G. Preparata, Nucl. Phys. B27, 541 (1971).ADSCrossRefGoogle Scholar
  18. 13.
    For more general situations with light cone dominance cf. also W. Kummer, Nucl. Phys. B42, 141 (1972).Google Scholar
  19. 14.
    For electromagnetic currents we may disregard problems related to compatibility with equal time commutators, cf. W. Kummer, Phys. Rev. D6, 1670 (1972).Google Scholar
  20. 15.
    One usually excludes by means of perturbation theoretic arguments operators with odd twist like 471,whereas is absent in our parity conserving situation.Google Scholar
  21. 16.
    Inserting ju jv into a T-product, z2-iezo must be re-placed by z2-ie.Google Scholar
  22. 17.
    N. Christ, B. Hasslacher, A. H. Mueller, Phys. Rev. D6, 3543 (1972).ADSCrossRefGoogle Scholar
  23. 18.
    cf. e.g. N. N. Bogoliubov, D. V. Shirkov, “Introduction to the Theory of Quantized Fields”, Interscience New York-London 1959, §50.Google Scholar
  24. 19.
    C. G. Callan, Phys. Rev. D2, 1541 (1970) and D5, 3202 (1972);ADSGoogle Scholar
  25. K. Symanzik, Commun. Math. Phys. 18, 227 (1970) and 23, 49 (1972).ADSMathSciNetCrossRefGoogle Scholar
  26. 20.
    Amputation“ means dropping the propagators at each external line.Google Scholar
  27. 21.
    S. Weinberg, Phys. Rev. 118, 838 (1960).MATHADSMathSciNetCrossRefGoogle Scholar
  28. 22.
    M. Gell-Mann, F. Low, Phys. Rev. 95, 1300 (1954).MATHADSMathSciNetCrossRefGoogle Scholar
  29. 23.
    E. g. the anomalous dimension 2 yJ = y‘ + y” for the two current operators needed in the application of (3.26) to deep-inelastic lepton-nucleon scattering vanishes. This can be seen as follows: Imagine j to be coupled to an external field and inserted between one-particle states. The only renormalization effects originate then from the wave-function renormalization (”Z1“ in QED) and from the proper vertex renormalization (”Z2 -1“ in QED). Current conservation yields the Ward-identity (Z1/Z2 = 1) so that no renormalization is left over (Z = 1).Google Scholar
  30. 24.
    V. N. Gribov, L. N. Lipatov, Phys. Letters 37B, 78 (1971);ADSGoogle Scholar
  31. S. Coleman, D. J. Gross, Phys. Rev. Letters 31, 851 (1973).ADSCrossRefGoogle Scholar
  32. 25.
    M. Y. Han, Y. Nambu, Phys. Rev. 139, 1006 B(1965);ADSMathSciNetCrossRefGoogle Scholar
  33. H. Fritzsch, M. Gell-Mann, Proc. of the Int. Conf. on High Energy Physics, NAL 1972.Google Scholar
  34. 26.
    W. Kainz, M. Schweda, unpublished.Google Scholar
  35. 27.
    A similar verification is claimed in ref. [7]. The relevant calculation has been performed, however, there for the inconsistent special case n2 = 0, (n.k) = 0, where k is some external four-momentum. Nevertheless the result (4.6) as quoted from ref. [7] turns out to be correct for n2 0 as well [26].Google Scholar
  36. 28.
    W. Kainz, W. Kummer, M. Schweda, in preparation.Google Scholar
  37. 29.
    S. Weinberg, Phys. Rev. Letters 31, 494 (1973).CrossRefGoogle Scholar
  38. 30.
    S. Coleman, S. Weinberg, Phys. Rev. D7, 1888 (1973).ADSGoogle Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • W. Kummer
    • 1
  1. 1.Inst. f. Theoret. PhysikTechn. Hochschule WienWienAustria

Personalised recommendations