Advertisement

Review of Recent Work on Finite Quantum Electrodynamics

  • M. P. Fry
Conference paper
Part of the Acta Physica Austriaca book series (FEWBODY, volume 13/1974)

Abstract

According to Pauli [1], Ehrenfest was perhaps the first to note that Dirac’s 1927 version of quantum electrodynamics must lead to a divergent electron self-energy. Opinion in the literature since then on the consistency of finite quantum electrodynamics has been conspicuously inconsistent. Notable, in the sense of commanding widespread attention, are the papers of Källén [2], Gell-Mann and Low [3], Landau and collaborators [4], Johnson, Baker, and Willey [5], and Adler [6]. Here we will review in some detail the work of Johnson, Baker, and Willey (JBW) and Adler. This will serve as an introduction to and motivation for some work to be discussed later on. A very readable account of the assumptions underlying Källén’s result that at least one of the renormalization constants must be infinite, together with a summary of the criticism of his result and his reply to it, may be found in his lectures at Schladming in 1965 [7]. Bjorken’s summary of the conference proceedings is also relevant [8]. Gell-Mann and Low’s work on the small-distance behavior of quantum electrodynamics, although not directly concerned with the full problem of the finiteness of quantum electrodynamics, is mentioned here because of its profound influence on later developments in the subject. An excellent review of their work is given by Wilson [9]. Discussion of the result of Landau and co-workers that the photon wave function renormalization constant Z3 is infinite may be found in a lecture of Källén [10] and a paper of Kamefuchi [11].

Keywords

Quantum Electrodynamic Goldstone Boson Ultraviolet Divergence Photon Propagator Electron Propagator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Pauli, Naturwiss. 21, 841 (1933)ADSCrossRefGoogle Scholar
  2. R. Jost, in Aspects of Quantum Theory, edited by A. Salam and E. P. Wigner (Cambridge Univ. Press, Cambridge, England, 1972 ), p. 73.Google Scholar
  3. 2.
    G. Källén, K. Dan Vidensk. Selsk, Mat.-Fys. Medd. 27, No. 12 (1953)Google Scholar
  4. G. Källén, K. Dan Vidensk. CERN Report No. CERN/T/GK/3, 1955 (unpublished)Google Scholar
  5. G. Källén, K. Dan Vidensk. in Proc. of the CERN Symposium on High Energy Accelerators and Pion Physics ( CERN, Geneva, 1956 ), Vol. 2, p. 187Google Scholar
  6. G. Källén, K. Dan Vidensk. Handbuch der Physik V /1 (1958)Google Scholar
  7. G. Källén, K. Dan Vidensk. Acta Phys. Austr., Suppl. 2, 133 (1965).Google Scholar
  8. 3.
    M. Gell-Mann, F. E. Low, Phys. Rev. 95, 1300 (1954).MATHADSMathSciNetCrossRefGoogle Scholar
  9. 4.
    L. D. Landau, in Niels Bohr and the Development of Physics, edited by W. Pauli (McGraw-Hill, New York, 1955), and references cited therein.Google Scholar
  10. 5.
    K. Johnson, M. Baker, R. Willey, Phys. Rev. Letters 11, 518 (1963).MATHADSMathSciNetCrossRefGoogle Scholar
  11. This preliminary account of their work is further developed in K. Johnson, M. Baker, R. Willey, Phys. Rev. 136, 1111 (1964)ADSMathSciNetCrossRefGoogle Scholar
  12. K. Johnson, R. Willey, M. Baker, ibid. 163, 1699 (1967)ADSGoogle Scholar
  13. K. Johnson, R. Willey, M. Baker, Zh. Eksp. Teor. Fiz. 52, 318 (1967)Google Scholar
  14. K. Johnson, R. Willey, M. Baker, Sov. Phys.-JETP 25, 205 (1967)ADSGoogle Scholar
  15. M. Baker, K. Johnson, Phys. Rev. 183, 1292 (1969)ADSCrossRefGoogle Scholar
  16. M. Baker, K. Johnson, Phys. Rev. D3, 2516 (1971); 3, 2541 (1971).ADSGoogle Scholar
  17. This work, as well as that of S. L. Adler Phys. Rev. D5, 3021 (1972); 7, 1948 (E) (1973)Google Scholar
  18. K. Johnson and M. Baker, Phys. Rev. D8, 1110 (1973).ADSGoogle Scholar
  19. 6.
    S. L. Adler, Phys. Rev. D5, 3021 (1972); 6, 3445 (1972); 7, 1948(E) (1973); 7, 3821(E) (1973); 8, 2400 (1973).Google Scholar
  20. 7.
    G. Källén, Acta Phys. Austr., Suppl. 2, 133 (1965).Google Scholar
  21. 8.
    J. D. Bjorken, Acta Phys. Austr., Suppl. 2, 239 (1965)Google Scholar
  22. 9.
    K. Wilson, Phys. Rev. D3, 1818 (1971), Sec. II and the Appendix.ADSGoogle Scholar
  23. 10.
    G. Källén, in Proc. of the CERN Symposium on High Energy Accelerators and Pion Physics ( CERN, Geneva, 1956 ), Vol. 2, p. 187.Google Scholar
  24. 11.
    S. Kamefuchi, K. Dan. Vidensk. Selsk. Mat.-Fys. Medd. 31, No. 6 (1957).Google Scholar
  25. 12.
    Therefore, this eliminates from consideration here open theories of the sort proposed by T. D. Lee and G. C. Wick, Phys. Rev. D2, 1033 (1970)Google Scholar
  26. A. Salam, J. Strathdee, Nuovo Cimento Letters 4, 101 (1970)CrossRefGoogle Scholar
  27. C. J. Isham, A. Salam, J. Strathdee, Phys. Rev. D3, 1805 (1971); 5, 2548 (1972).Google Scholar
  28. 13.
    S. L. Adler, Phys. Rev. D5, 3021 (1972), Sec. 2.ADSGoogle Scholar
  29. 14.
    M. Baker, K. Johnson, Phys. Rev. D3, 2541 (1971).ADSGoogle Scholar
  30. 15.
    Much of the work in this section was suggested by K. Wilson and J. Kogut, Phys. Reports (to be published), especially Secs. I, II, and X, and by K. Johnson, talk delivered at the University of Maryland (1972) (unpublished).Google Scholar
  31. 16.
    L. P. Kadanoff, Nuovo Cimento 44B, 276 (1966).Google Scholar
  32. 17.
    T. T. Wu, Phys. Rev. 149, 380 (1966).ADSCrossRefGoogle Scholar
  33. 18.
    See, for example, H. E. Stanley, Introduction to Phase Transitions and Critical Phenomena (Clarendon Press, Oxford, England, 1971 ), Ch. 8 and references cited therein.Google Scholar
  34. 19.
    F. J. Dyson, Phys. Rev. 85, 631 (1952).MATHADSMathSciNetCrossRefGoogle Scholar
  35. 20.
    K. Johnson, R. Willey, M. Baker, Phys. Rev. 163, 1699 (1967) Sec. IV and Appendix A.ADSCrossRefGoogle Scholar
  36. 21.
    M. Baker, K. Johnson, Phys. Rev. D3, 2516 (1971).ADSGoogle Scholar
  37. 22.
    S. L. Adler, W. A. Bardeen, Phys. Rev. D4, 3045 (1971); 6, 734 (E) (1972).Google Scholar
  38. 23.
    See Ref. 21, Sec. VI.Google Scholar
  39. 24.
    K. Johnson, in 9th Latin American School of Physics, Santiago, Chile, 1967, edited by I. Saavedra (Benjamin, New York, 1968 ), Sec. 8;Google Scholar
  40. M. Baker, K. Johnson, Phys. Rev. D3, 2516 (1971), Sec. VII. We note that Eq. (10) implies that. This would seem to imply that the triangle anomaly would be sufficient to avoid potential Goldstone bosons. However, since it gives no contribution to the Ward identity (9) at qu = 0, it cannot prevent r5u(p + q,p) from developing a singularity at qu = 0.Google Scholar
  41. 25.
    H. Pagels, Phys. Rev. Letters 28, 1482 (1972)ADSCrossRefGoogle Scholar
  42. H. Pagels, Phys. Rev. D7, 3689 (1973).ADSGoogle Scholar
  43. 26.
    R. Jackiw, K. Johnson, Phys. Rev. D8, 2386 (1973) Sec. II. D. The argument at the beginning of this section has immediate application to quantum electrodynamics.ADSGoogle Scholar
  44. 27.
    K. Wilson, Phys. Rev. D2, 1478 (1970)ADSGoogle Scholar
  45. S. Coleman, R. Jackiw, Ann. Phys. (N.Y.) 67, 552 (1971).ADSMathSciNetCrossRefGoogle Scholar
  46. 28.
    S. L. Adler, Phys. Rev. D5, 3021 (1972); 7, 1948 (E) (1973).Google Scholar
  47. 29.
    K. Johnson, R. Willey, M. Baker, Phys. Rev. 163, 1699 (1967);ADSCrossRefGoogle Scholar
  48. M. Baker, K. Johnson, Phys. Rev. D3, 2541 (1971).ADSGoogle Scholar
  49. 30.
    Unitarity may place a constraint on the possible summation procedures. See R. J. Crewther, S. S. Shei, and T. M. Yan, Phys. Rev. D8, 3396 (1973) Footnote 45.ADSGoogle Scholar
  50. 31.
    See Ref. 28, Secs. 3.B. and 4.Google Scholar
  51. 32.
    K. Johnson, M. Baker, Phys. Rev. D8, 1110 (1973)ADSGoogle Scholar
  52. 33.
    M. Bernardini et al., Phys. Letters 45B, 510 (1973)ADSGoogle Scholar
  53. V. Alles-Borelli et al., Nuovo Cimento 7A, 345 (1972).ADSCrossRefGoogle Scholar
  54. 34.
    R. J. Crewther, S. S. Shei, T. M. Yan, Phys. Rev. D8, 3396 (1973)ADSGoogle Scholar
  55. See also the remarks of S. L. Adler, Phys. Rev. D5, 3021 (1972)ADSGoogle Scholar
  56. 35.
    M. Baker, K. Johnson, Phys. Rev. 183, 1292 (1969)ADSCrossRefGoogle Scholar
  57. S. L. Adler, Phys. Rev. D5, 3021 (1972) Sec. 3.A. The function c1o) is JBW’s f(αo).ADSGoogle Scholar
  58. 36.
    One technical assumption made throughout the work of JBW and Adler is that terms that vanish asymptotically in each order of perturbation theory do not, when summed up, become asymptotically dominant, as briefly discussed in Sec. I. G. Marques and C.H.Woo (Phys. Rev. (to be published)) have illustrated with a simple model the failure of this assumption when the physical coupling constant coincides with one of the zeros of the Callen-Symanzik function β. This is the situation in Adler’s case: β(α) = 0∞ implies β(α) = 0∞ (S.L. Adler, Phys. Rev. D5, 3021 (1972), Sec. 4). The need to check this assumption has also been stressed by K. Symanzik, Comm. Math. Phys. 23, 49 (1971).Google Scholar
  59. 37.
    R. A. Abdellatif, Ph. D. thesis, University of Washington, 1970 (unpublished)Google Scholar
  60. S. L. Adler D6, 3445 (1972); 7, 3821 (E) (1973);Google Scholar
  61. H.J. Schnitzer, Phys. Rev. D8, 385 (1973)ADSGoogle Scholar
  62. N. Christ, Phys. Rev. D9, 946 (1974).ADSGoogle Scholar
  63. 38.
    S. L. Adler, Phys. Rev. D8, 2400 (1973).ADSGoogle Scholar
  64. For a third approach, see K. Johnson and M. Baker, Phys. Rev. D8, 1110 (1973)ADSGoogle Scholar
  65. 40.
    The use of Eq. (14) as the starting point for the calculation of F was first suggested by M. Baker and K. Johnson, Phys. Rev. D3, 2541 (1971).ADSGoogle Scholar
  66. 41.
    M. P. Fry, Acta Phys. Austr. (to be published).Google Scholar
  67. 42.
    S. Mandelstam, Ann. Phys. (N.Y.) 19, 1 (1962)MATHADSMathSciNetCrossRefGoogle Scholar
  68. S. Mandelstam, Phys. Rev. 175, 1580 (1968)ADSCrossRefGoogle Scholar
  69. A. Q. Sarker, Ann. Phys. (N.Y.) 24, 19 (1963).ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • M. P. Fry
    • 1
  1. 1.Institut für Theoretische PhysikUniversität GrazAustria

Personalised recommendations