Methods of Artificial Intelligence and Computations in Physical Sciences

  • J. A. Campbell
Conference paper
Part of the Acta Physica Austriaca book series (FEWBODY, volume 13/1974)


Even among its detractors [1], the subject of artificial intelligence (AI) is credited with advances in technique in non-numerical computing. As the value of this type of computing in physics in particular and physical sciences in general is now beyond doubt, it should be useful to see how work in physical sciences and in AI can be related. To begin, it is reasonable to ask two questions:
  1. (ql)

    What is AI?

  2. (q2)

    What implications does AI have for physical problems (and vice versa)?



Physical Science Feynman Rule Intelligent Behaviour Chess Position Symbolic Program 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. L. Dreyfus, “What Computers can’t do”, Harper and Row, New York (1972).Google Scholar
  2. 2.
    A. M. Turing, Mind 59, 433 (1950). For a short commentary on some other objections to Turing’s test, with references, see P. H. Millar, Mind 82, 595 (1973).Google Scholar
  3. 3.
    J. Moses, Comm. A. C. M. 14, 548 (1971).MATHMathSciNetGoogle Scholar
  4. 4.
    R. H. Risch, Trans. Amer. Math. Soc. 139, 167 (1969).CrossRefMATHGoogle Scholar
  5. 5.
    A. Samuel, IBM J. Res. Develop. 11, 601 (1967).Google Scholar
  6. 6.
    M. M. Botvinnik, “Computers, Chess and Long-Range Planning”, Springer-Verlag, New York (1970).MATHGoogle Scholar
  7. 7.
    J. McCarthy et al., “LISP 1.5 Programmer’s Manual”, MIT Press, Cambridge, Massachusetts (1965).Google Scholar
  8. 8.
    J. A. Campbell, W. H. Jefferys, Celest. Mech. 2, 467 (1970).CrossRefMATHADSGoogle Scholar
  9. 9.
    H. C. Longuet-Higgins, A. Ortony, in “Machine Intelligence 3” (ed. D. Michie ), Edinburgh University Press, Edinburgh (1968), p. 311.Google Scholar
  10. 10.
    C. Hewitt, in “Second International Joint Conference on Artificial Intelligence”, British Computer Society, London (1971), p. 167.Google Scholar
  11. 11.
    J. R. Slagle,“Artificial Intelligence”, McGraw-Hill, New York (1971).Google Scholar
  12. 12.
    N. J. Nilsson, “Problem-Solving Methods in Artificial Intelligence”, McGraw-Hill, New York (1971).Google Scholar
  13. 13.
    D. Lurié, in “Computing as a Language of Physics”, International Atomic Energy Authority, Vienna (1972), p. 529; A. C. Hearn, ibid., p. 567.Google Scholar
  14. 14.
    D. Barton, J. P. Fitch, Rep. Prog. Phys, 35, 235 (1972).CrossRefADSGoogle Scholar
  15. 15.
    S. Amarel, in “Machine Intelligence 3” (ed. D. Michie ), Edinburgh University Press, Edinburgh (1968), p. 131.Google Scholar
  16. 16.
    R. Penrose, M. A. H. MacCallum, Phys. Rep. 6C, 241 (1973).CrossRefADSMathSciNetGoogle Scholar
  17. 17.
    B. Honig, E. A. Kabat, L. Katz, C. Levinthal and T. T. Wu, J. Mol. Biol. 80, 277 (1973).CrossRefGoogle Scholar
  18. 18.
    P. Y. Chou, G. D. Fasman, J. Mol. Biol. 74, 263 (1973).CrossRefGoogle Scholar
  19. 19.
    T. T. Wu, E. A. Kabat, J. Mol. Biol. 75, 13 (1973).CrossRefGoogle Scholar
  20. 20.
    Global claims for the scope of.AI are not now heard outside stories by science-fiction writers; Nilsson’s operational definition of AI reflects the new modesty which is abroad in the subject (N.J.Nilsson, in “Third International Joint Conference on Artificial Intelligence”, Stanford Research Institute, Menlo Park, California (1973), p.XIII.).Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • J. A. Campbell
    • 1
  1. 1.King’s College Research CentreKing’s CollegeCambridgeEngland

Personalised recommendations