Advertisement

The Effect of Electric Stimulation on the Axoplasmic Transport of Newly Synthetized Neuronal Proteins

  • J. Kiss
  • Eszter Láng
  • J. Hámori
Conference paper
Part of the Journal of Neural Transmission book series (NEURAL SUPPL, volume 11)

Summary

  1. 1.

    One hour of electric stimulation of the preganglionic oculomotor nerve results in an enhanced speed of fast axonal transport of the newly synthetized proteins, as revealed by light and electron microscope auto-radiography of labelled and transported proteins within the synaptic endings (calices) of the stimulated axons present in the ciliary ganglion of the chick.

     
  2. 2.

    In the ciliary ganglion cells the synthesis of proteins is also markedly activated by electric stimulation of the preganglionic fibres.

     

Keywords

Electric Stimulation Ganglion Cell Neuronal Protein Osmic Acid Ciliary Ganglion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Droz, B.: Synthèse et transfert des protéines cellulaires dans les neurones ganglionnaires; étude radioautographique quantitative en microscopie éléctronique. J. Microscopie 6, 201–228 (1967).Google Scholar
  2. Droz, B., and H. L. Koenig: Dynamic Condition of Protein in Axons and Axon Terminals. Acta neuropath., Berlin, Suppl. 5, 109–118 (1971).Google Scholar
  3. Granboulan, N., and P. Granboulan: Cytochémie ultrastructurale du nucléole. II. Étude des sites de synthèse du RNA dans le nucléole et le noyau. Exp. Cell. Res. 38, 604–619 (1965).PubMedCrossRefGoogle Scholar
  4. Kerkut, G. A.: Transport of glutamate to nerve terminals. Neurosc. Res. Progr. Bull. V, 322–325 (1967).Google Scholar
  5. Koenig, H. L.: Relation entre la distribution de l’activité acétylcholinesterasique et celle de l’ergastoplasme dans les neurones du ganglion ciliaire du poulet. Arch. Anat. micr. Morph. exp. 54, 937–964 (1965).PubMedGoogle Scholar
  6. Koenig, H. L., and B. Droz:Transports axonaux de protéines aux terminaisons nerveuses du ganglion ciliaire du poulet, après injection intraventriculaire cérébrale de leucine-3 H. C.R. Acad. Sci. (Paris) 272,2812–2815 (1971 a).Google Scholar
  7. Koenig, H. L., and B. Droz: Effect of nerve section on protein metabolism of ganglion cells and preganglionic nerve endings. Acta neuropath., Berlin, Suppl. V, 119–125 (1971b).Google Scholar
  8. Kopriwa, B. M., and C. P. Leblond: Improvements in the coating technique of radioautography. J. Histochem. Cytochem. 10, 269–284 (1962).CrossRefGoogle Scholar
  9. Lenhossék, M.: Das Ganglion ciliare der Vögel. Arch. für mikr. Anat. 76, 745 (1911).Google Scholar
  10. Szentícgothai, J., A. Donhoffer, and K. Rajkovits: Die Lokalisation des Cholinesterase in der intraneuronalen Synapse. Acta histochem. 1, 272–281 (1954).Google Scholar
  11. Weiss, P. A., and H. B. Hiscoe: Experiments on the mechanisme of nerve growth. J. Exp. Zool. 107, 315 (1948).PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • J. Kiss
    • 1
    • 2
  • Eszter Láng
    • 1
  • J. Hámori
    • 1
  1. 1.Second and First Department of AnatomySemmelweis University Medical SchoolBudapestHungary
  2. 2.Second Department of AnatomySemmelweis University Medical SchoolBudapestHungary

Personalised recommendations