Dynamics of Transmissional Ultrastructures in Sympathetic Neurones of the Rat

Part of the Journal of Neural Transmission book series (NEURAL SUPPL, volume 11)


The ultrastructural features of the segment proximal to a ligature of noradrenergic, sympathetic nerve fibres were studied in the sciatic nerve of the rat. The radioautographic method was used to identify these fibres on the basis of their property of specific uptake of 3H-noradrenaline (NA) or an 3H-precursor. It was observed that the labeled fibres exhibit various ultrastructural characteristics, in such a way that the storage of NA cannot be related to one definite type of cytoplasmic organelle.

The accumulation of 3H-NA above a ligature as the result of a migration phenomenon from the perikaryon was tested for a period of 22 h: it appeared extremely low, negligible in normal conditions. Thus the migration cannot be accounted for supplying NA to nerve terminals. The differences in storage properties between the perikarya and the nerve terminals were emphasized. A local function is proposed for the small granulated vesicles of the perikaryon. An hypothesis was set up, according which the accumulation of NA proximal to a ligature may be understood as the result of local assembling of storage organelles from material, especially proteins manufactered in the perikaryon and stopped in their migration down to terminals.


Sciatic Nerve Osmium Tetroxide Axonal Transport Sympathetic Neurone Dense Patch 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Dahlström, A.: Observations on the accumulation of noradrenaline in the proximal and distal parts of peripheral adrenergic nerves after compression. J. Anat. (London) 99, 677–689 (1965).PubMedGoogle Scholar
  2. Dzhlström, A.: The effects of drugs on axonal transport of amine storage granules. In: New aspects of storage and release mechanisms of catecholamines (Schumann, H. J.,and G. Kroneberg,eds.), pp. 20–36. BerlinHeidelberg-New York: Springer. 1970.Google Scholar
  3. Dahlström, A.,and J. Häggendal: Axonal transport of amine storage granules in sympathetic adrenergic neurons. Adv. in Bioch. Psychopharmacol. 2, 65–93 (1970).Google Scholar
  4. Devine, C. E.,and R. Laverty: Fixation for electron microscopy and retention of 3H-noradrenaline by tissues. Experientia 24, 1156–1157 (1968).PubMedCrossRefGoogle Scholar
  5. Fisher, J. E.,and S. Snyder: Disposition of norepinephrine-H3 in sym- pathetic ganglia. J. Pharmacol. exp. Therap. 150, 190–195 (1965).Google Scholar
  6. Geffen, L. B., L. Descarries,and B. Droz: Intraaxonal migration of 3Hnorepinephrine injected into the coeliac ganglion of cats: radioautographic study of the proximal segment of constricted splenic nerves. Brain Res. 35, 315–318 (1971).PubMedCrossRefGoogle Scholar
  7. Geffen, L. B., B. G. Livett,and R. A. Rush: Immunohistochemical localization of protein components of catecholamine storage vesicles. J. Physiol. (London) 204, 593–605 (1969).Google Scholar
  8. Geffen, L. B.,and A. Ostberg: Distribution of granular vesicles in normal and constricted sympathetic neurons. J. Physiol. (London) 204, 583 to 592 (1969).PubMedGoogle Scholar
  9. Geffen, L. B.,and R. A. Rush: Transport of noradrenaline in sympathetic nerves and the effect of nerve impulses on its contribution to transmitter stores. J. Neurochem. 15, 925–930 (1968).PubMedCrossRefGoogle Scholar
  10. Gray, E. G.: Electron microscopy of presynaptic organelles of the spinal cord. J. Anat. (London) 97, 101–106 (1963).Google Scholar
  11. Häggendal, J.,and A. Dahlström: The functional role of the amine storage granules of the sympatho-adrenal system. Memoirs Scc. Endocrinol. 19,651–667 (1971).Google Scholar
  12. Hökfelt, T.: In vitro studies on central and peripheral monoamine neurons at the ultrastructural level. Z. Zellforsch. 91, 1–14 (1968).PubMedCrossRefGoogle Scholar
  13. Hökfelt, T.,and A. Dahlström: Effects of two mitosis inhibitors (colchicine and vinblastine) on the distribution and axonal transport of nor-adrenaline storage particles, studied by fluorescence and electron microscopy. Z. Zellforsch. 119,460–482 (1971).PubMedCrossRefGoogle Scholar
  14. Kappeler, K.,and D. Mayor: The accumulation of noradrenaline in constricted sympathetic nerves as studied by fluorescence and electron microscopy. Proc. Roy. Soc. B 167,282–292 (1967).Google Scholar
  15. Kappeler, K.,and D. Mayor: An electron microscopic study of the early changes proximal to a constriction in sympathetic nerves. Proc. Roy. Soc. B 172,39–51 (1969).Google Scholar
  16. Laduron, P.,and F. Belpaire: Transport of noradrenaline and dopaminehydroxylase in sympathetic nerves. Life Sci. 7, 1–7 (1968).PubMedCrossRefGoogle Scholar
  17. Lever, J. D., T. L. B. Spriggs, J. D. P. Graham,and C. Ivens: The distribution of 3H-noradrenaline and acetylcholinesterase (AChE) proximal to constrictions of hypogastric and splenic nerves in the cat. J. Anat. (London) 107,407–419 (1970).PubMedGoogle Scholar
  18. Livett, B. G., L. B. Geffen,and R. A. Rush: Immunohistochemical evidence for the transport of dopamine-ß-hydroxylase and a catecholamine binding protein in sympathetic nerves. Biochem. Pharmacol. 18,923 to 924 (1968).CrossRefGoogle Scholar
  19. Pellegrino de Iraldi, A.,and E. De Robertis: Action of reserpine, iproniazid and pyrogallol on nerve endings of the pineal gland. Int. J. Neuropharmacol. 2, 231–239 (1963).Google Scholar
  20. Pellegrino de Iraldi, A.,and E. De Robertis: The neurotubular system of the axon and the origin of granulated and non granulated vesicles in regenerating nerves. Z. Zellforsch. 87,330–344 (1968).CrossRefGoogle Scholar
  21. Potter, L. T.,and J. Axelrod: Studies on the storage of norepinephrine and the effect of drugs. J. Pharmacol. exp. Therap. 140,199–206 (1963).Google Scholar
  22. Richardson, K. G.: The fine structure of autonomic nerve endings in smooth muscle of the rat vas deferens. J. Anat. (London) 96, 427–442 (1962).PubMedGoogle Scholar
  23. Richardson, K. G.: The fine structure of the albino rabbit iris, with special reference to the identification of adrenergic and cholinergic nerves and nerve endings in its intrinsic muscles. Amer. J. Anat. 114,173–205 (1964).PubMedCrossRefGoogle Scholar
  24. Richardson, K. G.: Electron microscopic identification of autonomic nerve endings. Nature 210,756 (1966).PubMedCrossRefGoogle Scholar
  25. Sotelo,C., and J. Taxi: Axonal flow of catecholamines in constricted sciatic nerves of the rat. An autoradiographic study. Anat. Rec. 169,435 (1971).Google Scholar
  26. Sotelo,C., and J. Taxi: On the axonal migration of catecholamines in constricted sciatic nerve of the rat. A radioautographic study. Z. Zell-forsch. 138,345–370 (1973).CrossRefGoogle Scholar
  27. Taxi, J.: Contribution â l’étude des connexions des neurones moteurs du système nerveux autonome. Ann. Sci. Nat., Zool., 12ème ser., VII, 413–674 (1965).Google Scholar
  28. Taxi, J.: Identification des fibres nerveuses adrénergiques dans quelques muscles lisses de Mammifères par la méthode radioautographique utilisée en microscopie électronique. Bull. Ass. Anat., 52éme Réunion (Paris-Orsay), 1132–1139 (1967).Google Scholar
  29. Taxi, J.: Sur la fixation et la signification du contenu dense des vesicles des fibres adrénergiques étudiées au microscope électronique. C.R. Acad. Bulg. Sci. 21,1229–1231 (1968).PubMedGoogle Scholar
  30. Taxi, J.,and B. Droz: Étude de l’incorporation de noradrénaline-3H (NA-3H) et de 5-hydroxytryptophane-3H (5-HTP-3H) dans les fibres nerveuses du canal déférent et de l’intestin. C.R. Acad. Sci. (Paris) 263,1237–1240 (1966a).Google Scholar
  31. Taxi, J.,and B. Droz: Étude de l’incorporation de noradrénaline-3H (NA-3H) et de 5-hydroxytryptophane-3H (5-HTP-3H) dans l’épiphyse et dans le ganglion cervical supérieur. C.R. Acad. Sci. (Paris) 263,1326–1329 (1966 b).Google Scholar
  32. Taxi, J.,and B. Droz: Radioautographic study of the accumulation of some biogenic amines in the autonomic nervous system. In: Cellular dynamics of the neuron (Barondes, S. H.,ed.). New York: Academic Press. 1969.Google Scholar
  33. Taxi, J., J. Gautron,and P. L’Hermite: Données ultrastructurales sur une éventuelle modulation adrénergique de l’activité du ganglion cervical supérieur du Rat. C.R. Acad. Sci. (Paris) 269,1281–1284 (1969).Google Scholar
  34. Van Orden III, L. S., K. G. Bensch,and N. J. Giarman: Histochemical and functional relationships of catecholamines in adrenergic nerve endings. II. Extravesicular norepinephrine. J. Pharmacol. exper. Therap. 155,428–439 (1967).Google Scholar
  35. Van Orden III, L. S., F. E. Bloom, R. J. Barnett,and N. J. Giarman: Histochemical and functional relationships of catecholamines in adrenergic nerve endings. I. Participation of granular vesicles. J. Pharmacol. exper. Therap. 154,185–199 (1966).Google Scholar
  36. Van Orden III, L. S., J. P. Burke, M. Cuver,and F. V. Lodoen: Localization of depletion-sensitive and depletion-resistant norepinephrine storage sites in autonomic ganglia. J. Pharmacol. exp. Therap. 174,56–71 (1970).Google Scholar
  37. Weiss, P.: Neuronal dynamics and neuroplasmic (“axonal”) flow. In: Cellular dynamics of the neuron (Barondes, H. S.,ed.). New York: Academic Press. 1969.Google Scholar
  38. Weiss, P.,and H. B. Hiscoe: Experiments on the mechanism of nerve growth. J. exp. Zool. 107,315–396 (1948).PubMedCrossRefGoogle Scholar
  39. Wolfe, E. D., L. T. Potter, K. C. Richardson,and J. Axelrod: Localizing tritiated norepinephrine in sympathetic axons by electron microscopic autoradiography. Science 138,440–442 (1962).PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • J. Taxi
    • 1
  1. 1.Laboratoire de Biologie animaleUniversité de Paris-VIParis 5èmeFrance

Personalised recommendations