Advertisement

Evolutionary Aspects of Transmitter Heterogeneity

  • D. A. Sakharov
Part of the Journal of Neural Transmission book series (NEURAL SUPPL, volume 11)

Summary

Different mechanisms of chemical transmission coexist in advanced nervous systems since, in the distant past, nerve cells originated many times and neurones of a particular ancestry retained a specific type of chemistry from their appearance on. Diversification of transmission mechanism within the inherited type would be an additional source of transmitter heterogeneity while a kind of selection could reduce the diversity of transmitters during evolution.

This hypothesis is explored in the article as well as the alternative view suggesting that neurones are of common phylohistogenetic origin and that they differentiated into various chemical types in the course of evolution due to functional specialization. The latter explanation is regarded as unsatisfactory.

Keywords

Nerve Cell Transmission Mechanism Chemical Type Motor Neurone Evolutionary Aspect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

ACh

(acetylcholine)

CA

(catecholamine)

DA

(dopamine)

GABA

(gamma-aminobutyric acid)

Gl

(glutamate)

5-HT

(5-hydroxytryptamine)

NA

(noradrenaline)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beklemischev, W. N.: Foundations of comparative anatomy of invertebrates, Vol. 2. Moscow: Nauka. 1964. (In Russian.)Google Scholar
  2. Burnstock, G.: Evolution of the autonomic innervation of visceral and cardiovascular systems in vertebrates. Pharmacol. Revs. 21, 247–324 (1969).Google Scholar
  3. Burnstock, G., G. Campbell, D. Satchell, and A. Smythe: Evidence that adenosine triphosphate or a related nucleotide is the transmitter substance released by non-adrenergic inhibitory nerves in the gut. Brit. J. Pharmacol. 40, 668–688 (1970).Google Scholar
  4. Campbell, C. B. G., and W. Hodos: The concept of homology and the evolution of the nervous system. Brain Behay. Evol. 3, 353–367 (1970).Google Scholar
  5. Chlopin, N. G.: Foundations of histology. Leningrad: Publ. House of U.S.S.R. Acad. Sci. 1946. (In Russian.)Google Scholar
  6. Cobb, J. L. S.: The distribution of mono-amines in the nervous system of echinoderms. Comp. Biochem. Physiol. 28, 967–971 (1969).CrossRefGoogle Scholar
  7. Consolo, S., S. Garattini, H. Ladinski, and H. Theonen: Effect of chemical sympathectomy on the content of acetylcholine, choline and choline acetyltransferase activity in the cat spleen and iris. J. Physiol. 220, 639–646 (1972).PubMedGoogle Scholar
  8. Cottrell, G. A., and M. S. Laverack: Invertebrate pharmacology. Ann. Rev. Pharmacol. 8, 273–298 (1968).CrossRefGoogle Scholar
  9. Cottrell, G. A., and V. W. Pentreath: Localization of catecholamines in the nervous system of a starfish, Asterias rubens, and of a brittlestar, Ophiothrix fragilis. Comp. Gen. Pharmacol. 1, 73–81 (1970).PubMedCrossRefGoogle Scholar
  10. Dahl, E., B. Falck, C. von Mecklenburg, and H. Myhrberg: An adrenergic nervous system in sea anemones. Quart. J. micr. Sci. 104, 531–534 (1963).Google Scholar
  11. Davis, L. E.: Differentiation of ganglionic cells in Hydra. J. exp. Zool. 176, 107–128 (1971).PubMedCrossRefGoogle Scholar
  12. Ehinger, B., B. Falck, H. Persson, A.-M. Rosengren, and B. Sporrong: Acetylcholine in adrenergic terminals of the cat iris. J. Physiol. 209, 557–565 (1970).PubMedGoogle Scholar
  13. Florey, E.: Neurotransmitters and modulators in the animal kingdom. Fed. Proc. 26, 1164–1178 (1967).PubMedGoogle Scholar
  14. Gerasimov, V. D., and Yu. D. Kholodova: The effect of amino acids on the electrical activity in the neurons of the snail Helix pomatia. Zh. evol. Biokhim. Fiziol. 7, 156–161 (1971).Google Scholar
  15. Gerschenfeld, H. M.: Serotonin: Two different inhibitory actions on snail neurons. Science 171, 1252–1254 (1971).PubMedCrossRefGoogle Scholar
  16. Giller, E., Jr., and J. H. Schwartz: Choline acetyltransferase in identified neurons of abdominal ganglion of Aplysia californica. J. Neurophysiol. 34, 93–115 (1971).PubMedGoogle Scholar
  17. Glaizner, B.: Pharmacological mapping of cells in the subocsophageal ganglia of Helix aspersa. In: Neurobiology of Invertebrates (Salânki, J., ed.), pp. 267–283. Budapest: Akadémiai Kiads. 1968.Google Scholar
  18. Hehn, G. von: Ober den Feinbau des hyponeuronalen Nervensystems des Seesternes (Asterias rubens L.). Z. Zellforsch. 105, 137–154 (1970).CrossRefGoogle Scholar
  19. Holland, N. D.: The fine structure of the axial organ of the feather star Nemaster rubiginosa (Echinodermata: Crinoidea). Tissue & Cell 2, 625–636 (1970).CrossRefGoogle Scholar
  20. Kerkut, G. A., K. Ralph, R. J. Walker, G. Woodruff, and R. Woods: Excitation in the molluscan central nervous system. In: Excitatory synaptic mechanisms, pp. 105–117. University of Oslo Press. 1970.Google Scholar
  21. Kerkut, G. A., C. B. Sedden, and R. J. Walker: Uptake of DOPA and 5-hydroxytryptophan by monoamine-forming neurones in the brain of Helix aspersa. Comp. Biochem. Physiol. 23, 159–162 (1967).PubMedCrossRefGoogle Scholar
  22. Krnjevic, K., R. Pumain, and L. Renaud: The mechanism of excitation by acetylcholine in the cerebral cortex. J. Physiol. 215, 247–268 (1971).PubMedGoogle Scholar
  23. Leclerc, M., and R. Delavault: Présence de fibres nerveuses dans la paroi coelomique chez Asterina gibbosa Pennant (Echinoderme, Astéride). C. R. Acad. Sc. Paris 272, 3311–3313 (1971).Google Scholar
  24. Lentz, T. L.: Primitive nervous systems. New Haven: Yale University Press. 1968.Google Scholar
  25. McCaman, R. E,. and S. A. Dewhurst: Choline acetyltransferase in individual neurons of Aplysia californica. J. Neurochem. 17, 1421–1426 (1970).PubMedCrossRefGoogle Scholar
  26. McLennan, H.: Synaptic transmission. Philadelphia: Saunders. 1970. Michelson, M. J., and E. V. Zeimal: Acetylcholine. Leningrad: Nauka. 1970. (In Russian.)Google Scholar
  27. Otsuka, M., E. A. Kravitz, and D. D. Potter: Physiological and chemical architecture of a lobster ganglion with particular reference to gammaaminobutyrate and glutamate. J. Neurophysiol. 30, 725–752 (1967).PubMedGoogle Scholar
  28. Pentreath, V. W., and G. A. Cottrell: Giant neurons and neurosecretion in the hyponeural tissue of Ophiothrix fragilis Abildgaard. J. exp. mar. Biol. Ecol. 6, 249–264 (1971).CrossRefGoogle Scholar
  29. Pitman, R. M.: Transmitter substances in insects: A review. Comp. gen. Pharmacol. 2, 347–371 (1971).Google Scholar
  30. Sakharov, D. A.: Principal approaches to the systematization of nerve cells. Zh. obshch. Biol. 31, 449–457 (1970a).Google Scholar
  31. Sakharov, D. A.: Cellular aspects of invertebrate neuropharmacology. Ann. Rev. Pharmacol. 10, 335–352 (1970b).PubMedCrossRefGoogle Scholar
  32. Sakharova, A. V., and D. A. Sakharov: Visualization of intraneuronal monoamines by treatment with formalin solutions. In: Histochemistry of nervous transmission (Eränkö, O., ed.), pp. 11–25. Amsterdam: Elsevier. 1971.Google Scholar
  33. Sakharov, D. A., and T. M. Turpaev: Evolution of cholinergic transmission. In: Neurobiology of invertebrates (Salcínki, J., ed.), pp. 305–314. Budapest: Akadémiai Kiads. 1968.Google Scholar
  34. Salcínki, J.: Studies on the effect of iontophoretically applied L-glutamate on the giant nerve cells of Gastropoda (Helix and Lymnaea). Annal. Biol. Tihany 35, 75–81 (1968).Google Scholar
  35. Schimkewitsch, W. M.: Die Methorisis als embryologisches Prinzip. Zool. Anz. 33 (1908). Cit. Knorre, A. G.: Embryonic histogenesis. Leningrad: Medicina. 1971. (In Russian.)Google Scholar
  36. Voskresenskaya, A. K.: The regulating function of the invertebrate nervous system. In: Neurobiology of invertebrates (Salcínki, J., ed.), pp. 367 to 380. Budapest: Akadémiai Kiad6. 1968.Google Scholar
  37. Welsh, J. H., and L. D. Williams: Monoamine-containing neurons in planaria. J. Comp. Neurol. 138, 103–116 (1970).PubMedCrossRefGoogle Scholar
  38. Westfall, J. A.: Ultrastructure of synapses in a primitive coelenterate. J. Ultrastruct. Res. 32, 237–246 (1970a).PubMedCrossRefGoogle Scholar
  39. Westfall, J. A.: Synapses in a sea anemone, Metridium (Anthozoa). Septième Congress international de microscopie électronique, Grenoble, 3, 717 (1970b).Google Scholar
  40. Westfall, J. A., S. Yamataka, and P. D. Enos: Ultrastructural evidence of polarized synapses in the nerve net of Hydra. J. Cell Biol. 51, 318–323 (1971).PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • D. A. Sakharov
    • 1
  1. 1.Institute of Developmental BiologyU.S.S.R. Academy of SciencesMoscowUSSR

Personalised recommendations