Synaptochemistry Outlines and Scope of a Discipline

  • B. Csillik
Conference paper
Part of the Journal of Neural Transmission book series (NEURAL SUPPL, volume 11)


Synaptochemistry, a discipline based on the cytochemical entity of the neurone, aimes to reveal structural-functional correlations of impulse transmission at the molecular level. Cholinergic, monoaminergic and aminacidergic synaptochemical systems are scrutinized with respect to pre- and postsynaptic (receptor) functions and to excitation-performance coupling. Perspectives of synaptochemistry include a new interpretation of transducer function, a rational approach to the pharmacotherapy of neurovegetative and neuropsychiatric disorders and a new model of neurocellular memory.


Synaptic Vesicle Axon Terminal Postsynaptic Membrane Acetylcholinesterase Activity Motor Endplate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, C. W. M., and N. A. Tuquan: The histochemical demonstration of protease by a gelatine-silver substrate. J. Histochem. Cytochem. 9, 469–472 (1961).PubMedCrossRefGoogle Scholar
  2. Albers, R. W.: The distribution of gamma-aminobutyrate and related enzyme systems. In: Inhibition in the nervous system and gammaaminobutyric acid (Roberts, Baxter, Van Harreveld, Wiersma, Ross Adey, Killiam, eds.), pp. 196–201. Oxford: Pergamon Press. 1960.Google Scholar
  3. Bennett, M. V. L., E. Aljure, Y. Nakajima, and G. D. Pappas: Electronic junctions between teleost spinal neurons: electrophysology and ultra-structure. Science 141, 262–264 (1963).PubMedCrossRefGoogle Scholar
  4. Bloom, F. E., and L. L. Iversen: Localizing 3H-GABA in nerve terminals of rat cerebral cortex by electron microscopic autoradiography. Nature (London) 229, 628–630 (1971).CrossRefGoogle Scholar
  5. Burn, J. H., and M. J. Rand: Acetylcholine in adrenergic transmission. Ann. Rev. Pharmacol. 163–182 (1965).Google Scholar
  6. Burt, A. M.: A histochemical procedure for the localization of choline acetyltransferase activity. J. Histochem. Cytodiem. 18, 408–415 (1970).CrossRefGoogle Scholar
  7. Cajal, R. Y.: Histologie du systeme nerveux de l’home et des vertébrés. Madrid. (Facsimile edition of the 1911 work.)Google Scholar
  8. Changeaux, J. P., M. Kasai, and C. Y. Lee: Use of a snake venom toxin to characterize the cholinergic receptor proteins. Proc. Nat. Acad. Sci. U.S.A. 67, 1241 (1970).CrossRefGoogle Scholar
  9. Clegg, P. C.: The effect of prostaglandins on the response of isolated smooth-muscle preparations to sympathomimetic substances. Mem. Soc. Endocr. 14, 119–136 (1966).Google Scholar
  10. Couteaux, R.: Remarques sur les methodes actuelles de detection histochimique des activités cholinestérasiques. Arch. int. Physiol. 59, 526–537 (1951).Google Scholar
  11. Csillik, B.: Submicroscopic organization of the post-synaptic membrane in the myonerural junction. J. Cell. Biol. 17, 571–586 (1963).PubMedCrossRefGoogle Scholar
  12. Csillik, B.: Histochemical model experiments on the effect of various drugs on the catecholamine content of adrenergic nerve terminals. J. Neurochem. 11, 351–355 (1964).PubMedCrossRefGoogle Scholar
  13. Csillik, B.: Acetylcholine. J. Neuro-Visceral Relat., Supp1.IX, 187–211 (1969).Google Scholar
  14. Csillik, B., and S. Bense: Function-dependent alterations in the distribution of synaptic vesicles. Acta biol. Acad. Sci. hung. 22, 131–139 (1971).Google Scholar
  15. Csillik, B., and E. Knyihdr: On the effect of motor nerve degeneration on the fine-structural localization of esterases in the mammalian motor end plate. J. Cell. Sci. 3, 529–538 (1968).PubMedGoogle Scholar
  16. Csillik, B., A. M. Gerebtzoff, J. Kiss, and E. Knyihdr: Zur Histochemie der limbischen Hemmung. Histochemie 28, 38–54 (1971).CrossRefGoogle Scholar
  17. Csillik, B., G. Sdvay, I. Nagy, O. Bondray, and M. Poberai: Cholinesterase activity of sensory nerve endings. Acta physiol. hung. 6, 379–382 (1954).PubMedGoogle Scholar
  18. Csillik, B., and L. Tth: Histochemical identification of Renshaw elements. J. Histochem. Cytochem. 20, 385–387 (1972).PubMedCrossRefGoogle Scholar
  19. Curtis, D. R., J. W. Phillips, and J. C. Watkins: Acidic amino acids with strong excitatory actions on mammalian neurones. J. Physiol. (London) 166, 1–14 (1963).Google Scholar
  20. Curtis, D. R., and R. W. Ryall: The excitation of Renshaw cells by cholinomimetics. Exp. Brain Res. 2, 49–65 (1966).Google Scholar
  21. Dale, H. H.: Junctional transmission of nervous effects by chemical agents. Proc. Mayo Clin. 30, 5–20 (1955).Google Scholar
  22. De Robertis, E.: Isolation of inhibitory nerve endings from brain. In: Structure and function of inhibitory neuronal mechanism (Euler, Skoglund, Söderberg, eds.), pp. 511–522. Oxford: Pergamon Press. 1968.Google Scholar
  23. De Robertis, E., and Fiszer de S. Plazas: Acetylcholinesterase and acetylcholine proteolipid receptor: two different components of electroplax membranes. Biochim. Biophys. Acta 219, 388–397 (1970).Google Scholar
  24. Eccles, J. C.: The physiology of synapses. Berlin-Göttingen-HeidelbergNew York: Springer. 1964.CrossRefGoogle Scholar
  25. Ehinger, B., and B. Falck: Autoradiography of some suspected neurotransmitter substances: GABA, glycine, glutamic acid, histamine, dopamine and L-DOPA. Brain Research 33, 157–172 (1971).PubMedCrossRefGoogle Scholar
  26. Elliot, T. R.: On the action of adrenaline. J. Physiol. (London) 31, 20 p (1904).Google Scholar
  27. Eränkó, O.: Distribution of fluorescing islets, adrenaline and nor-adrenaline in the adrenal medulla of the hamster. Acta endocr. (Kbh) 18, 174–179 (1955).Google Scholar
  28. Eränkó, O.: Histochemical demonstration of catecholamines by fluorescence induced by formaldehyde vapour. J. Histochem. Cytochem. 12, 487–488 (1964).CrossRefGoogle Scholar
  29. Erulkar, S. D., C. W. Nichols, M. B. Popp, and G. B. Koelle: Renshaw elements: localization and acetylcholinesterase content. J. Histochem. Cytochem. 161, 128–135 (1968).CrossRefGoogle Scholar
  30. Falck, B., N. A. Hillarp, G. Thieme, and A. Torp: Fluorescence of catecholamines and related compounds condensed with formaldehyde. J. Histochem. Cytochem. 10, 348–354 (1962).CrossRefGoogle Scholar
  31. Fukuda, T., and G. B. Koelle: The cytological localization of intracellular neuronal acetylcholinesterase. J. biophys. biochem. Cytol. 5, 433–440 (1959).PubMedCrossRefGoogle Scholar
  32. Gacek, R. R., Y. Nomura, and K. Balogh: Acetylcholinesterase activity in the efferent fibers of the stato-acoustic nerve. Acta oto-laryng. 59, 541–553 (1965).CrossRefGoogle Scholar
  33. Gajó, M., G. Kalman, and B. Csillik: Ein Beitrag zur cytochemischen Interpretation der Denervation-Überempfindlichkeit. Acta histochemica 38, 293–304 (1970).PubMedGoogle Scholar
  34. Glassman, R.: The biochemistry of learning: an evaluation of the role of RNA and protein. Annual Rev. Biochem. 38, 605–646 (1969).CrossRefGoogle Scholar
  35. Haber, B., K. Kuriyama, and E. Roberts: L-Glutamic Acid Decarboxylase: a new type in glial cells and human brain gliomas. Science 168, 598–599 (1970).PubMedCrossRefGoogle Scholar
  36. Heilbrunn, L. V., and F. J. Wierzinski: The action of various cations on muscle protoplasm. J. cell. comp. Physiol. 29, 15–32 (1947).CrossRefGoogle Scholar
  37. Horton, E. W.: Prostaglandins, p. 145 ff. Berlin-Heidelberg-New York: Springer. 1972.CrossRefGoogle Scholar
  38. Jancsó, N.: Desensitisation with capsaicin and related acylamides as a tool for studying the function of pain receptors. Proc. 3rd Int. Pharmacol. Meet. Parmacology of pain, Vol. 9, pp. 33–55. Oxford-New York: Pergamon Press. 1968.Google Scholar
  39. Jankowska, E., and S. Lindström: Morphological identification of Renshaw cells. Acta physiol. scand. 81, 428–430 (1971).Google Scholar
  40. Jones, S. F., and S. Kwanbunbumpen: The effect of nerve stimulation and hemicholinium on synaptic vesicles at the mammalian neuromuscular junction. J. Physiol. (London) 207, 31–50 (1970).Google Scholar
  41. Kcísa, P.: Acetylcholinesterase transport in the central and peripheral nervous tissue: the role of tubules in the enzyme transport. Nature (London) 218, 1265–1267 (1968).CrossRefGoogle Scholar
  42. Kcísa, P., S. P. Mann, and C. Hebb: Localization of choline acetyltransferase. Nature (London) 226, 812–816 (1970).Google Scholar
  43. Knyihcír, E., and B. Csillik: Localization of inhibitors of the acetylcholine-and GABA-synthesizing systems in the rat brain. Exp. Brain Res. 11, 1–16 (1970).Google Scholar
  44. Koelle, G. B.: A new general concept of the neurohumoral functions of acetylcholine and acetylcholinesterase. J. Pharm. (London) 14, 65–90 (1962).Google Scholar
  45. Koelle, G. B., and J. S. Friedenwald: A histochemical method for localizing cholinesterase activity. Proc. Soc. exp. Biol. N.Y. 70, 617–622 (1949).Google Scholar
  46. Korneliussen, H.: Ultrastructure of normal and stimulated motor endplates. Z. Zellforschung 130, 28–57 (1972).CrossRefGoogle Scholar
  47. Koshtoyantz, H.S.: Proteins, metabolism and nervous regulation, pp. 61–62. Moscow. 1951. (In Russian.)Google Scholar
  48. Langley, J. N.: On the reaction of cells and of nerve endings to certain poisons, chiefly as regards the reaction of striated muscle to nicotine and curare. J. Physiol. (London) 33, 374 (1905).Google Scholar
  49. Malmfors, T.: Studies on adrenergic nerves. The use of rat and mouse iris for direct observations on their physiology and pharmacology at cellular and subcellular levels. Acta physiol. Scand. 64, Suppl. 248, 1–93 (1965).Google Scholar
  50. Marks, N., and A. Lajtha: Protein breakdown in the brain. Biochem. J. 89, 438–447 (1963).PubMedGoogle Scholar
  51. Matthies, H.: The intracellular regulation of the interneuronal connectivity — the molecular foundation of learning processes. Thesis, Magdeburg (1971).Google Scholar
  52. Nachmansohn, D.: Chemical and molecular basis of nerve activity. New York: Academic Press. 1959.Google Scholar
  53. Poberai, M., G. Scívay, and B. Csillik: Function-dependent proteinase activity in the neuromuscular synapse. Neurobiology 2, 1–7 (1972).PubMedGoogle Scholar
  54. Purpura, D. P., M. Girado, T. G. Smith, D. A. Callan, and H. Grundfest: Structure-activity determinants of pharmacological effects of amino acids and related compounds on central synapses. J. Neurochem. 3, 238–268 (1959).PubMedCrossRefGoogle Scholar
  55. Reik, L., G. L. Higgins, G. L. Petzold, P. Greengard, and R. J. Barrnett: Hormone-sensitive adenyl cyclase: cytochemical localization in rat liver. Science 168, 382–384 (1970).PubMedCrossRefGoogle Scholar
  56. Renshaw, B.: Influence of discharge of motoneurons upon excitation of neighbouring motoneurons. J. Neurophysiol. 4, 167–183 (1941).Google Scholar
  57. Roberts, E.: Some biochemical-physiological correlations in studies of yaminobutyric acid. In: Structure and function of inhibitory neuronal mechanisms (Euler, Skoglund, Söderberg, eds.), pp. 401–418. Oxford: Pergamon Press. 1968.Google Scholar
  58. Scívay, G., and B. Csillik: Acetylcholine-induced calcium release in the postjunctional sarcoplasm. Symp. Biol. Hung. 5, 149–157 (1965).Google Scholar
  59. Scheibel, M. E., and A. B. Scheibel: Inhibition and the Renshaw cell. A structural critique. Brain Behay. Evol. 4, 53–93 (1971).Google Scholar
  60. Sherrington, C. S.: The central nervous system. A text-book of physiology. Cit.: In Sherrington, C. S., 1947: The integrative action of the nervous system. Cambridge: University Press. 1897.Google Scholar
  61. Siggins, G. R., A. P. Oliver, B. J. Hoffer, and F. E. Bloom: Cyclic adenosine monophosphate and norepinephrine: effects on transmembrane properties of cerebellar Purkinje cells. Science 171, 192 (1971).PubMedCrossRefGoogle Scholar
  62. Stöhr, P.: Mikroskopische Anatomie des vegetativen Nervensystems. In: Handbuch der mikroskopischen Anatomie des Menschen (Möllendorff), Vol. 4, Part 5. Berlin-Göttingen-Heidelberg: Springer. 1957.Google Scholar
  63. Sutherland, E. W., and G. A. Robison: The role of cyclic 3’, 5’-AMP in responses to catecholamines and other hormones. Pharmacol. Rev. 18, 145–161 (1966).Google Scholar
  64. Sze, P. Y., and R. A. Lovell: A re-examination of the effect of thiosemicarbazide on brain GABA and GAD in vivo. Life Sci. 9, 889–899 (1970).CrossRefGoogle Scholar
  65. Thomas, R. C., and V. J. Wilson: Precise localization of Renshaw cells with a new marking technique. Nature (London) 206, 211–213 (1965).CrossRefGoogle Scholar
  66. Waser, P. G., and I. Hadorn: Relations of cholinergic receptors to acetylcholinesterase of endplates in denervated muscle. Bibl. Anat. 2, 155–160 (1961).Google Scholar
  67. Willis, W. D., and J. C. Willis: Location of Renshaw cells. Nature (London) 204, 1214–1215 (1964).CrossRefGoogle Scholar
  68. Zacks, S. I.: The motor end-plate. Philadelphia: Saunders. 1964.Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • B. Csillik
    • 1
  1. 1.Department of AnatomyUniversity Medical SchoolSzegedHungary

Personalised recommendations