The Role of Choline in Maintaining the Fine Structure of Nerve Terminals in the Superior Cervical Ganglion of Cat

  • Á. Párducz
  • F. Joó
  • O. Fehér
Conference paper
Part of the Journal of Neural Transmission book series (NEURAL SUPPL, volume 11)


The fine structure of synapses was studied in the cat superior cervical ganglion under various experimental conditions. The presence of choline in the performed experiments was found to play an essential role not only in maintaining the intraganglionic nerve transmission, but also in preserving the normal fine structure of presynaptic terminals. Results obtained shed more light on other aspects of the vesicle hypothesis elucidating one of the cellular mechanisms by which the disappearance of synaptic vesicles in stimulated cholinergic nerve terminals could be interpreted.


Synaptic Vesicle Presynaptic Terminal Superior Cervical Ganglion Perfusion Fluid Choline Deficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Birks, R. I.: Effects of stimulation on synaptic vesicles in sympathetic ganglia, as shown by fixation in the presence of Mg’’. J. Physiol. 216, 26–28 P (1971).Google Scholar
  2. Bosmann, H. B., and B. A. Hemsworth: Synaptic vesicles. Incorporation of choline by isolated synaptosomes and synaptic vesicles. Biochem. Pharmacol. 19, 133–141 (1970).PubMedCrossRefGoogle Scholar
  3. Brown, G. L., and W. Feldberg: The acetylcholine metabolism of a sympathetic ganglion. J. Physiol. 88, 265–283 (1936).PubMedGoogle Scholar
  4. Collier, B., and C. Lang: The metabolism of choline by a sympathetic ganglion. Canad. J. Physiol. Pharmacol. 47, 119–126 (1969).CrossRefGoogle Scholar
  5. Collier, B., and F. C. Macintosh: The source of choline for acetylcholine synthesis in a sympathetic ganglion. Canad. J. Physiol. Pharmacol. 47, 127–135 (1969).CrossRefGoogle Scholar
  6. Csillik, B., and S. Bense: Function-dependent alterations in the distribution of synaptic vesicles. Acta biol. Acad. Sci. hung. 22, 131–139 (1971).Google Scholar
  7. Csillik, B., and F. Jod: Effect of hemicholinium on the number of synaptic vesicles. Nature (London) 213, 508–509 (1967).CrossRefGoogle Scholar
  8. Del Castillo, J., and B. Katz: Biophysical aspects of neuromuscular transmission. Prog. Biophys. 6, 121–170 (1956).Google Scholar
  9. De Robertis, E., and A. V. Ferreira: Submicroscopic changes of the nerve endings in the adrenal medulla after stimulation of the splanchnic nerve. J. biophys. biochem. Cytol. 3, 611–614 (1957).CrossRefGoogle Scholar
  10. Dyachkowa, L. N., J. Hdmori, and L. Fedina:Ultrastructure of synapses in ganglion ciliare of birds after ortho-and antidromic electrical stimulation. Dokl. Acad. Sci. U.S.S.R. 172,957–959 (1967). (In Russian.)Google Scholar
  11. Friesen, A. J. D., and J. C. Khatter: Effect of stimulation on synaptic vesicles in the superior cervical ganglion of the cat. Experientia 27, 285–287 (1971).PubMedCrossRefGoogle Scholar
  12. Friesen, A. J. D., G. M. Ling, and M. Nagai: Choline and phospholipid choline in a sympathetic ganglion and their relationship to acetylcholine synthesis. Nature (London) 214, 722–724 (1967).CrossRefGoogle Scholar
  13. Hubbard, J. I., and S. Kwanbunbumpen: Evidence for the vesicle hypothesis.. J. Physiol. 194, 407–420 (1968).PubMedGoogle Scholar
  14. Jones, S. F., and S. Kwanbunbumpen: The effects of nerve stimulation and hemicholinium on synaptic vesicles at the mammalian neuromuscular junction. J. Physiol. 207, 31–50 (1970).PubMedGoogle Scholar
  15. Karnovsky, M. J.: Formaldehyde-glutaraldehyde fixative of high osmolarity for use in electron microscopy. J. Cell Biol. 27, 137 A (1965).Google Scholar
  16. Kibjakov, A. V.: Über humorale Übertragung der Erregung von einem Neuron auf das andere. Arch. ges. Physiol. 232, 432–443 (1933).CrossRefGoogle Scholar
  17. Macintosh, F. C.: Synthesis and storage of acetylcholine in nervous tissue. Can. J. Biochem. Physiol. 41, 2555–2571 (1963).CrossRefGoogle Scholar
  18. Millonig, G.: Advantages of a phosphate buffer for 0s04 solutions in fixation. J. appl. Physics. 32, 1637 (1961).Google Scholar
  19. Nicolescu, P., M. Dolivo, C. Rouiller, and C. Foroglou-Kerameus: The effect of deprivation of glucose on the ultrastructure and function of the superior cervical ganglion of the rat in vitro. J. Cell Biol. 29, 267–286 (1966).PubMedCrossRefGoogle Scholar
  20. Pdrducz, A., and O. Fehér: Fine structural alterations of presynaptic endings in the superior cervical ganglion of the cat after exhausting preganglionic stimulation. Experientia 26, 629–630 (1970).CrossRefGoogle Scholar
  21. Pdrducz, A., O. Fehér, and F. Jod: Effects of stimulation and hemicholinium (HC-3) on the fine structure of nerve endings in the superior cervical ganglion of the cat. Brain Res. 34, 61–72 (1971).CrossRefGoogle Scholar
  22. Paton, W. D. M., and W. L. M. Perry: The relationship between depolarisation and block in the cat’s superior cervical ganglion. J. Physiol. 119, 43–57 (1953).PubMedGoogle Scholar
  23. Perri, V., O. Sacchi, E. Raviola, and G. Raviola: Evaluation of the number and distribution of synaptic vesicles at cholinergie nerve-endings after sustained stimulation. Brain Res. 39, 526–529 (1972).PubMedCrossRefGoogle Scholar
  24. Reynolds, E. S.: The use of lead citrate at high pH as an electron opaque stain in electron microscopy. J. Cell Biol. 17, 208–212 (1963).PubMedCrossRefGoogle Scholar
  25. Whittaker, V. P.: The vesicle hypothesis, in: Excitatory Synaptic Mechanisms (Andersen, P., and J. K. S. Jansen, eds.), pp. 67–76. Universitetsforlaget. 1970.Google Scholar
  26. Whittaker, V. P.: Origin and function of synaptic vesicles. Ann. New York Acad. Sci. 183, 21–32 (1971).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • Á. Párducz
    • 1
    • 2
  • F. Joó
    • 1
  • O. Fehér
    • 1
  1. 1.Electron Microscope Laboratory, Biophysical Institute of the Biological Research Centre of the Hungarian Academy of Sciences, and Institute of Animal PhysiologyJózsef Attila University of SciencesSzegedHungary
  2. 2.Electron Microscope LaboratoryBiophysical Institute of the Biological Research Centre of the Hungarian Academy of SciencesSzegedHungary

Personalised recommendations