Spinal Transmission of Autonomic Processes

  • M. Réthelyi
Conference paper
Part of the Journal of Neural Transmission book series (NEURAL SUPPL, volume 11)


Some of the knowledge now available concerning the spinal autonomic processes in the term of sympathetic and parasympathetic reflex paths have been summarized in this chapter.

The scanty information about the spinal parasympathetic reflex path refers exclusively but not unequivocally to the localization of preganglionic parasympathetic neurons in the sacral spinal cord.—The sympathetic reflex path has been separated into three components: 1. primary visceroafferent fibers, 2. interneurons and 3. efferent, preganglionic sympathetic neurons. 1. The primary visceroafferent fibers appear to terminate in the Vth lamina of the spinal grey matter, ventrally of the main termination area of the cutaneous primary afferent fibers. Histological data suggest the possible termination of visceroafferent fibers in the Clarke’s column in the midthoracic segments. No indication can be found about a direct (monosynaptic) connection between primary sensory fibers and efferent neurons. 2. As the sympathetic reflex activity is travelling along spinal and supraspinal routes, both spinal and supraspinal interneurons have to be considered. According to indirect electrophysiological data the spinal interneurons would be localized in the Vth lamina and in more ventral regions of the spinal grey matter. Thus they may serve as convergence points of impulses arriving from viscera as well as from the skin and from muscles. Neurophysiological observations indicate that the supraspinal interneurons are localized in the medulla. 3. Light microscopic and ultrastructural analysises of the preganglionic sympathetic neurons in the intermedio-lateral nucleus have shown that I. the dendritic tree of the neurons is oriented in craniocaudal direction; II. the axon of the neurons after having left the nucleus turns ventrally and courses along the lateral margin of the ventral horn; III. the presynaptic fibers approach the nucleus at the lateral ircumference and the fibers establish repeated climbing-type contacts with the dendrites and perikarya; IV. three types of axon terminals can be found containing different types of vesicles.—Finally a tentative scheme of the neuronal organization of the sympathetic reflex path is given based upon the results of some preliminary degeneration experiments of the author.


Dorsal Horn Substantia Gelatinosa Autonomic Process Lateral Funiculus Primary Afferent Fibre 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aidar,O., W. A. Geohogan,and H. Ungewitter: Splanchnic afferent pathways in the central nervous system. J. Neurophysiol. 15,131–138 (1952).PubMedGoogle Scholar
  2. Alexander, R. S.: Tonic and reflex functions of medullary sympathetic cardiovascular centers. J. Neurophysiol. 9,205–217 (1946).PubMedGoogle Scholar
  3. Beacham, W. S.,and E. R. Perl: Background and reflex discharge of sympathetic preganglionic neurons in the spinal cat. J. Physiol. 172,400 to 416 (1964).PubMedGoogle Scholar
  4. Bok, S. T.: Das Rückenmark. In: Handbuch der mikroskopischen Anatomie des Menschen. Bd. IV, Teil I. Nervensystem (Möllendorff,W., ed.), pp. 478–578. Berlin: Springer. 1928.Google Scholar
  5. Carlsson, A., B. Falde, K. Fuxe,and N. A. Hillarp: Cellular localization of monoamines in the spinal cord. Acta physiol. Scand. 60,112–119 (1964).CrossRefGoogle Scholar
  6. Coote, J. H.,and C. B. B. Downman: Central pathways of some autonomic reflex discharges. J. Physiol. 183,714–729 (1966).Google Scholar
  7. Coote, J. H.,and J. F. Perez-Gonzalez: The response of some sympathetic neurones to volleys in various afferent nerves. J. Physiol. 208,261–278 (1970).Google Scholar
  8. Dalström, A.,and K. Fuxe: Evidence for the existence of monoamine neurons in the central nervous system. II. Experimentally induced changes in the intraneuronal amine levels in bulbospinal neuron systems. Acta physiol. Scand. 64,Suppl. 247, 7–85 (1965).Google Scholar
  9. Downman,C. B. B.: Skeletal muscle reflexes of splanchnic and intercostal nerve origin. J. Neurophysiol. 18,218–235 (1955).Google Scholar
  10. Downman,C. B. B.,and A. Houssian: Spinal tracts and supraspinal centres influencing visceromotor and allied reflexes in cats. J. Physiol. (London) 141,484–499 (1958).Google Scholar
  11. Franz, D. N., M. H. Evans,and E. R. Perl: Characteristics of viscerosympathetic reflex in the spinal cat. Am. J. Physiol. 211,1292–1298 (1966).Google Scholar
  12. Gagel,O.: Zur Histologie und Topographie der vegetativen Zentren im Rückenmark. Zschr. Anat. Entwgesch. 85,213–250 (1928).CrossRefGoogle Scholar
  13. Heimer, L.,and P. D. Wall: The dorsal root distribution to the substantia gelatinosa of the rat with a note on the distribution in the cat. Exp. Brain Res. 6,89–99 (1968).Google Scholar
  14. Henry, J. L.,and F. R. Calaresu: Topography and numerical distribution of neurons of the thoraco-lumbar intermediolateral nucleus in the cat. J. Comp. Neurol. 144,205–214 (1972).PubMedCrossRefGoogle Scholar
  15. Hongo, T.,and R. W. Ryall: Electrophysiological and microelectrophoretic studies on sympathetic preganglionic neurones in the spinal cord. Acta physiol. Scand. 68,96–104 (1966).CrossRefGoogle Scholar
  16. Illert, M.,and M. Seller: A descending sympathoinhibitory tract in the ventrolateral column of the cat. Pfügers Arch. 313,343–360 (1969).CrossRefGoogle Scholar
  17. Jacobsohn, L.: Über die Kerne des menschlichen Rückenmarkes. Anhang zu den Abhandlungen der königlichen preußischen Akademie der Wissenschaften. Berlin: Reimer. 1908.Google Scholar
  18. Kerr, F. W. L.,and S. Alexander: Descending autonomic pathways in the spinal cord. Arch. Neurol. (Chic.) 10,249–261 (1964).PubMedCrossRefGoogle Scholar
  19. Khayutin, V. M.,and E. V. Lukoshkova: Spinal mediation of. vasomotor reflexes in animals with intact brain studied by electrophysiological methods. Pfügers Arch. 321,197–222 (1970).Google Scholar
  20. Kirchner, F., A. Sato,and H. Weidinger: Central pathways of reflex discharges in the cervical trunk. Pfügers Arch. 319, 1–11 (1970).CrossRefGoogle Scholar
  21. Koizumi, K., A. Sato, A. Kaufman,and Mc. C. Brooks: Studies of sympathetic neuron discharges modified by central and peripheral excitation. Brain Res. 11,212–224 (1968).PubMedCrossRefGoogle Scholar
  22. Korn, H.: Splanchnic projection to the orbital cortex of the cat. Brain Res. 16,25–38 (1969).CrossRefGoogle Scholar
  23. Laruelle, L.: Contribution a l´étude du nevraxe végétatif. C.R. Assoc. Anat. (Paris) 31,210–229 (1936).Google Scholar
  24. Malliani, A., M. Pagani, G. Recordati,and P. Schwartz: Spinal sympathetic reflexes elicited by increases in arterial blood pressure. Am. J. Physiol. 220,128–134 (1971).Google Scholar
  25. Nyberg-Hansen, R.: Sites and mode of termination of reticulo-spinal fibers in the cat. An experimental study with silver impregnation methods. J. Comp. Neurol. 124, 71–100 (1965).Google Scholar
  26. Oliver, J. E., Jr., W. E. Bradley,and T. F. Fletcher: Identification of pre-ganglionic parasympathetic neurons in the sacral spinal cord of the cat. J. Comp. Neurol. 137,321–325 (1969).PubMedCrossRefGoogle Scholar
  27. Poljak, S.: Die Struktureigentümlichkeiten des Rückenmarkes bei den Chiropteren. Zschr. Anat. Entwgesch. 74,507–576 (1924).Google Scholar
  28. Polosa,C.: The silent period of sympathetic preganglionic neurons. Canad. J. Physiol. Pharmacol. 45,1033–1045 (1967).CrossRefGoogle Scholar
  29. Pomeranz, B., P. D. Wall,and W. V. Weber: Cord cells responding to fine myelinated afferents from viscera, muscle and skin. J. Physiol. (London) 199,511–532 (1968).PubMedGoogle Scholar
  30. Prout, B. J., J. H. Coote,and C. B. B. Downman: Supraspinal inhibition of a cutaneous vascular reflex in the cat. Amer. J. Physiol. 207,303–307 (1964).PubMedGoogle Scholar
  31. Raisman, G.: A second look at the parvicellular neurosecretory system. In: Brain-Endocrine Interaction. Median Eminence: Structure and Function. Int. Symp. Munich 1971, pp. 109–118. 1972.Google Scholar
  32. Réthelyi, M.: Cell and neuropil architecture of the intermedio-lateral (sym- pathetic) nucleus of cat spinal cord. Brain Res. 46,203–213 (1972).PubMedCrossRefGoogle Scholar
  33. Réthelyi, M.,and B. Halcísz: Origin of the nerve endings in the surface zone of the median eminence of the rat hypothalamus. Exp. Brain Res. 11,145–158 (1970).PubMedGoogle Scholar
  34. Réthelyi, M.,and J. Szentcígothai: The large synaptic complexes of the substantia gelatinosa. Exp. Brain Res. 7, 258–274 (1969).PubMedCrossRefGoogle Scholar
  35. Rexed, B.: A cytoarchitectonic atlas of the spinal cord in the cat. J. Comp. Neurol. 100,297–379 (1954).PubMedCrossRefGoogle Scholar
  36. Sato, A.,and R. F. Schmidt: Muscle and cutaneous afferents evoking sympathetic reflexes. Brain Res. 2,399–401 (1966).PubMedCrossRefGoogle Scholar
  37. Sato, A., A. Kaufman, K. Koizumi,and Ch. Mc C. Brooks: Afferent nerve groups and sympathetic reflex pathways. Brain Res. 14,575–587 (1969).PubMedCrossRefGoogle Scholar
  38. Scheibel, M. E.,and A. B. Scheibel: Terminal axonal patterns in cat spinal cord. II. The dorsal horn. Brain Res. 9,32–58 (1968).CrossRefGoogle Scholar
  39. Scheibel, M. E.,and A. B. Scheibel: Terminal patterns in cat spinal cord.III. Primary afferent collaterals. Brain Res. 13, 417–443 (1969).Google Scholar
  40. Schimert, J.: Das Verhalten der Hinterwurzelkollateralen im Rückenmark. Zschr. Anat. Entwickl. Gesch. 109, 665–687 (1939).CrossRefGoogle Scholar
  41. Schmidt, R. F.,and K. Schönfuss: An analysis of the reflex activity in the cervical sympathetic trunk induced by myelinated somatic afferents. Pflügers Arch. 314,175–198 (1970).PubMedCrossRefGoogle Scholar
  42. Schnitzlein, H. N., H. H. Hoffman, D. M. Hamlett,and E. M. Howell: A study of the sacral parasympathetic nucleus. J. Comp. Neurol. 120,477–485 (1963).PubMedCrossRefGoogle Scholar
  43. Sell, R., A. Erdélyi,and H. Schaefer: Untersuchungen über den Einfluß peripherer Nervenreizung auf die sympathische Aktivität. Pflügers Arch. 267,566–581 (1958).PubMedCrossRefGoogle Scholar
  44. Selzer, M.,and W. A. Spencer: Convergence of visceral and cutaneous afferent pathways in the lumbar spinal cord. Brain Res. 14,331–348 (1969).PubMedCrossRefGoogle Scholar
  45. Sterling, P.,and H. G. J. M. Kuypers: Anatomical organization of the brachial spinal cord of the cat. I. The distribution of dorsal root fibers. Brain Res. 4,1–15 (1967).PubMedCrossRefGoogle Scholar
  46. Szentrígothai, J.: Anatomical considerations of monosynaptic reflex arcs. J. Neurophysiol. 11,445–454 (1948).Google Scholar
  47. Szentcígothai, J.: Pathways and subcortical relay mechanisms of visceral afferents. Acta neuroveg. (Wien) 28,103–120 (1966).CrossRefGoogle Scholar
  48. Szentcígothai, J.,and M. Réthelyi: Cyto-and neuropil architecture of the spinal cord. In: New Developments in Electromyography and Clinical Neurophysiology (Desmedt, J. E.,ed.), Vol. 3, pp. 20–37. Basel: Karger. 1973.Google Scholar
  49. Weidinger, W. H., L. Fedina, H. Kehrel,and H. Schaefer: Über die Lokali-sation des „bulbären sympathischen Zentrums” und seine Beeinflussung durch Atmung und Blutdruck. Zschr. Kreisl. Forsch. 50, 229–241 (1961).Google Scholar
  50. Widen, L.: Cerebellar representation of high threshold afferents from splanchnic nerve. Acta physiol. scand. Suppl. 117, 1–69 (1955).Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • M. Réthelyi
    • 1
    • 2
  1. 1.First Department of AnatomySemmelweis University Medical SchoolBudapestHungary
  2. 2.Second Department of AnatomySemmelweis University Medical SchoolBudapestHungary

Personalised recommendations