The Validity and the Limitations of the Boltzmann-Equation

  • G. E. Uhlenbeck
Part of the Acta Physica Austriaca book series (FEWBODY, volume 10/1973)


A series of questions arising from the attempts to generalize the Boltzmann equation for monatomic molecules. A discussion of the Chapman-Enskog development. The question of the generalization of the Boltzmann equation to the quantum theory and the theory of relativity.


Boltzmann Equation Binary Collision Linearize Boltzmann Equation Gaussian Markov Process Hydrodynamical Equa 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    L. Boltzmann, Wien.Ber.66, 275 (1872)[= Wiss.Abh. Vol.1, p.316].Google Scholar
  2. Extension to Outside Forces in Wiss.Abh. Vol. 2, p. 1 (1875).Google Scholar
  3. [2]
    L. Boltzmann, Wiss.Abh. Vol. 2, p. 83 (1876).Google Scholar
  4. [3]
    I refer to the non-existence of restituting collisions (often also called inverse collisions) for non-spherical molecules. See H.A. Lorentz, Wien.Ber. 95, 115 (1887)[= Coll. Papers, Vol.6, p.74].Google Scholar
  5. [4]
    This is the so-called cycle proof of the H-theorem. See L. Boltzmann, Wien.Ber.95, 153 (1887)[= Wiss. Abh. Vol.3, p.272]; also Vorlesungen über Gastheorie, Vol.2, Ch. VII.Google Scholar
  6. [5]
    T. Carleman, Problèmes Mathematiques dans la Théorie Cinetique des Gaz (Publications Scientifiques de l’Institut Mittag-Leffler, Vol.2, Uppsala, 1957).Google Scholar
  7. [6]
    I refer of course to the famous Umkehr Einwand of Loschmidt (Wien.Ber.73, 139 (1876)) and Wiederkehr Einwand of Zermelo (Wied.Ann.57, 485 (1896)).Google Scholar
  8. [7]
    L. Boltzmann, Wien.Ber.76, 373 (1877)[= Wiss.Abh. Vol.2, p.112].Google Scholar
  9. L. Boltzmann, Wien.Ber.76, 373 (1877)[= Wiss.Abh. Vol.2, p.112].Google Scholar
  10. [8]
    I refer of course to the two urn or “dog-flea” model. See P. and T. Ehrenfest, Phys. Zeitschr. 8, 311 (1907) [= Coll. Papers p. 146].Google Scholar
  11. [9]
    P. and T. Ehrenfest, Enz. der Math. Wiss. Vol. IV, Art. 32, 1912. [= Coll. Papers, p.213] English translation by M.J. Moravcsik, Cornell Univ. Press, 1959. Compare esp. sections 14c and 14d.Google Scholar
  12. [10]
    S. Chapman, Phil. Trans. Roy. Soc. A 216, 279 (1916); A 217, 115 (1917).Google Scholar
  13. D. Enskog, Dissertation Univ. of Uppsala, 1917.Google Scholar
  14. [11]
    D. Hilbert, Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen (Teubner, Leipzig, 1912 ) Ch. 22.Google Scholar
  15. [12]
    W. Pauli, Probleme der modernen Physik (Hirzel Verlag, Leipzig, 1928) p.30 [= Coll. Papers, Vol.I, p.549].Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • G. E. Uhlenbeck
    • 1
  1. 1.The Rockefeller UniversityNew YorkUSA

Personalised recommendations