Advertisement

Ergodic Theory and Approach to Equilibrium for Finite and Infinite Systems

  • Oscar E. LanfordIII
Conference paper
Part of the Acta Physica Austriaca book series (FEWBODY, volume 10/1973)

Abstract

In this lecture, I will have something to say about:
  1. a)

    Classical ergodic theory for finite classical systems

     
  2. b)

    Time development and approach to equilibrium for infinite classical and quantum systems.

     

Keywords

Hilbert Space Measure Zero Equilibrium Measure Heisenberg Model Infinite System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. Araki, Commun. Math. Phys. 14 (1969) p. 120.CrossRefMATHADSMathSciNetGoogle Scholar
  2. [2]
    H. Araki and H. Miyata, Publ. Res. Inst. Math. Sci. Kyoto Univ. Ser. A 4, (1968), p. 373.CrossRefMATHMathSciNetGoogle Scholar
  3. [3]
    V.J. Arnold and A. Avez, Problémes Ergodiques de la Mechanique Classique, Paris: Gauthier-Villars (1967).Google Scholar
  4. [4]
    O. de Pazzis, Commun. Math. Phys. 22, (1971) p. 121.CrossRefMATHADSGoogle Scholar
  5. [5]
    C. Radin, Commun. Math. Phys. 21, (1971) p. 291.CrossRefMATHADSMathSciNetGoogle Scholar
  6. [6]
    D. Ruelle, Statistical Mechanics: Rigorous Results, New York: W.A. Benjamin (1969).MATHGoogle Scholar
  7. [7]
    Ya.G. Sinai, Funct. Anal. and Appl. 6, (1971) p. 41.Google Scholar
  8. [8]
    Ya.G. Sinai and K. Volkovyssky, Funct. Anal. and Appl. 5, (1971) p. 19.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • Oscar E. LanfordIII
    • 1
    • 2
  1. 1.Department of MathematicsUniversity of CaliforniaBerkeleyUSA
  2. 2.Institut des Hautes Études Scientifiques91-Bures-sur-YvetteFrance

Personalised recommendations