Advertisement

Ergodic Theory

  • D. Ruelle
Conference paper
Part of the Acta Physica Austriaca book series (FEWBODY, volume 10/1973)

Abstract

This talk is devoted to some remarks on the problem of the time evolution of systems containing a large number of particles. Do we understand approach to equilibrium? Sensitive dependence of solutions of differential equations on initial conditions. Time evolution of infinite systems. Evolution equations for dissipative systems.

Keywords

Time Evolution Statistical Mechanic Dissipative System Recurrence Time Infinite System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Arnbld, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications A l’hydrodynamique des fluides parfaits. Ann. Inst. Fourier. Grenoble 16, 319–361 (1966).CrossRefGoogle Scholar
  2. 2.
    D.G. Ebin and J. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. of Math. 92, 102–163 (1970)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    M. Klein, Paul Ehrenfest. North-Holland, Amsterdam, 1971.Google Scholar
  4. 4.
    O.E. Lanford, The classical mechanics of one-dimensional systems of infinitely many particles. I An existence theorem. Commun. math. Phys. 9, 176–191 (1968).CrossRefMATHADSMathSciNetGoogle Scholar
  5. O.E. Lanford, The classical mechanics of one-dimensional systems of infinitely many particles. II Kinetic theory. Commun. math. Phys. 11, 257–292 (1969).CrossRefMATHADSMathSciNetGoogle Scholar
  6. 5.
    O. de Pazzis. Preprint.Google Scholar
  7. 6.
    D.W. Robinson, Statistical mechanics of quantum spin systems. I. Commun. math. Phys. 6, 151–160 (1967).CrossRefMATHADSGoogle Scholar
  8. D.W. Robinson, Statistical mechanics of quantum spin systems. II. Commun. math. Phys. 7, 337–348 (1968).CrossRefMATHADSGoogle Scholar
  9. 7.
    D. Ruelle, Analyticity of Green’s functions of dilute quantum gases. J. math. Phys. 12, 901–903 (1971). Definition of Green’s functions for dilute Fermi gases. Hely. Phys. Acta. To appear.CrossRefADSMathSciNetGoogle Scholar
  10. 8.
    D. Ruelle and F. Takens, On the nature of turbulence. Commun. math. Phys. 20, 167–192 (1971).CrossRefMATHADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • D. Ruelle
    • 1
  1. 1.Institut des Hautes Études ScientifiquesBures-Sur-YvetteFrance

Personalised recommendations