Advertisement

A Survey of Neutron Transport Theory

  • Ivan Kuščer
Conference paper
Part of the Acta Physica Austriaca book series (FEWBODY, volume 10/1973)

Abstract

The basic ideas of neutron transport theory are compared with those of the kinetic theory of gases, and the essential differences are indicated. Typical idealized problems are briefly described, and the mathematical and computational methods reviewed.

Keywords

Boltzmann Equation Transport Theory Thermal Problem Neutron Density Neutron Transport 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. Chandrasekhar, Radiative Transfer. Oxford Univ. Press, 1950.Google Scholar
  2. [2]
    E. Fermi, Ricerca Sci. 7-II, 13 (1936).Google Scholar
  3. [3]
    G.C. Wick, Rendiconti Accad. Lincei 23, 774 (1936)MATHGoogle Scholar
  4. Zschr. Physik 121, 702 (1943).CrossRefMathSciNetGoogle Scholar
  5. [4]
    L.S. Ornstein and G.E. Uhlenbeck, Physica 4, 478 (1937).CrossRefADSGoogle Scholar
  6. [5]
    Halpern, R. Lueneburg and O. Clark, Phys. Rev. 53, 173 (1938).CrossRefADSGoogle Scholar
  7. [6]
    R.E. Peierls, Proc. Cambridge Phil. Soc. 35, 610 (1939).MATHMathSciNetGoogle Scholar
  8. [7]
    G. Placzek, Phys. Rev. 55, 1130 (1939); 60, 166 (1941).Google Scholar
  9. [8]
    E.A. Schuchard and E.A. Uehling, Phys. Rev. 58, 611 (1940)CrossRefMATHADSMathSciNetGoogle Scholar
  10. E.A. Uehling, Phys. Rev. 59, 136 (1941).CrossRefMATHADSGoogle Scholar
  11. [9]
    F. Adler, Phys. Rev. 60, 279 (1941).CrossRefMATHADSGoogle Scholar
  12. [10]
    W. Bothe, Zschr. Physik 118, 401 (1941–42);Google Scholar
  13. W. Bothe, Zschr. Physik 119, 493 (1942); 122, 648 (1944).CrossRefGoogle Scholar
  14. [11]
    T. Rosescu, Roumanian Reports IFA-FR-48 and 51, (1966).Google Scholar
  15. [12]
    W.L. Hendry, K.D. Lathrop, S. Vandervoort, and J. Wooten, U.S.AEC Report LA-4287-MS (1970).Google Scholar
  16. [13]
    R.E. Marshak, Theory of the Slowing Down of Neutrons by Elastic Collisions with Atomic Nuclei. Rev. Mod. Phys. 19, 185 (1947).CrossRefADSMathSciNetGoogle Scholar
  17. [14]
    K.M. Case, F. de Hoffmann, and G. Placzek, Introduction to the Theory of Neutron Diffusion. Washington: U.S. Government Printing Office. 1953.Google Scholar
  18. [15]
    B. Davison, Neutron Transport Theory. Oxford Univ. Press. 1957.Google Scholar
  19. [16]
    A.D. Galanin, Teoriya yadernykh reaktorov na teplovykh neitronakh. Moscow: Atomizdat. 1957 - English translation, Thermal Reactor Theory, Oxford: Pergamon Press. 1960.Google Scholar
  20. [17]
    A.M. Weinberg and E.P. Wigner, The Physical Theory of Neutron Chain Reactors. Univ. Chicago Press, 1958.Google Scholar
  21. [18]
    G.I. Marchuk: Metody rascheta jadernykh reaktorov. Moscow: Gosatomizdat. 1961.Google Scholar
  22. [19]
    J.H. Ferziger and P.F. Zweifel, The Theory of Neutron Slowing Down in Nuclear Reactors, Oxford: Pergamon Press. 1966.Google Scholar
  23. [20]
    M.M.R. Williams, The Slowing Down and Thermalization of Neutrons. Amsterdam: North Holland. 1966.Google Scholar
  24. [21]
    K.M. Case and P.F. Zweifel: Linear Transport Theory. Reading, Mass.: Addison-Wesley. 1967.MATHGoogle Scholar
  25. [22]
    Computing Methods in Reactor Physics (II. Greenspan, C.N. Kelber, and D. Okrent, eds.). New York: Gordon and Breach. 1968.Google Scholar
  26. [23]
    D.E. Parks, M.S. Nelkin, J.R. Beyster, and N.F. Wikner, Slow Neutron Scattering and Thermalization. New York: Benjamin. 1970.Google Scholar
  27. [24]
    G.I. Bell and S. Glasstone, Nuclear Reactor Theory. New York: Van Nostrand Reinhold. 1970.Google Scholar
  28. [25]
    M.M.R. Williams, Mathematical Methods in Particle Transport Theory. London: Butterworths. 1971.Google Scholar
  29. [26]
    G.I. Marchuk, V. I. Lebedev, Chislennye metody v teorii perenosa neitronov. Moscow: Atomizdat. 1971.Google Scholar
  30. [27]
    Proc. Symposia in Appl. Math. Vol. 11: Nuclear Reactor Theory. Providence: Amer. Math. Soc. 1961.Google Scholar
  31. [28]
    Proc. Brookhaven Conf. on Neutron Thermalization. U.S. AEC Report BNL 719 (C-32), 1962.Google Scholar
  32. [29]
    Pulsed Neutron Research (Proc. Symposium, Karlsruhe 1965 ). Vienna: IAEA. 1965.Google Scholar
  33. [30]
    Developments in Transport Theory (E. Inönii and P.F. Zweifel, eds.). New York: Academic Press. 1967.Google Scholar
  34. [31]
    Neutron Noise, Waves, and Pulse Propagation (Proc. Symposium, Gainesville, 1966). U.S. AEC Symposium Series, No. 9 (1967).Google Scholar
  35. [32]
    Reactor Physics in the Resonance and Thermal Regions (ANS Meeting, San Diego 1966; A.J. Goodjohn and G.C. Pomraning, eds.). Cambridge, Mass.: MIT Press. 1966.Google Scholar
  36. [33]
    Neutron Thermalization and Reactor Spectra (Proc. Symposium, Ann Arbor 1967 ). Vienna: IAEA. 1968.Google Scholar
  37. [34]
    SIAM-AMS Proc., Vol. 1: Transport Theory (Symposium, New York 1967Google Scholar
  38. R. Bellman, G. Birkhoff and I. AbuShumays, eds.). Providence: Amer. Math. Soc. 1969.Google Scholar
  39. [35]
    Vychislitel’nye metody v teorii perenosa (G.I. Marchuk, ed.). Moscow: Atomizdat. 1969.Google Scholar
  40. [36]
    Neutron Transport Theory Conf. (Blacksburg 1969). U.S. AEC Report OR0–3858–1 = CONF–690108 (1969).Google Scholar
  41. [37]
    Transport Theory (Atlas Symposium No. 3., Oxford 1970; G.E. Hunt, ed.). J. Quant. Spectroscopy Radiative Transfer 11, 511–1033 (1971).Google Scholar
  42. [38]
    Second Conference on Transport Theory (Los Alamos 1971 ). U.S. AEC Report CONF 710107 (1971).Google Scholar
  43. [39]
    G.R. Keepin, Physics of Nuclear Kinetics. Reading, Mass.: Addison-Wesley. 1965.Google Scholar
  44. [40]
    L. Pal, Nuovo Cimento Suppl. 7, 25 (1958); Acta Phys. Hung. 14, 345, 357, 369 (1962).Google Scholar
  45. [41]
    G.I. Bell, Nucl. Sci. Eng. 21, 390 (1965); and in Ref. 34, p. 181.Google Scholar
  46. [42]
    W. Matthes, Nukleonik 8, 87 (1966).Google Scholar
  47. [43]
    M.M.R. Williams, J. Nucl. Energy 22, 153 (1968).CrossRefGoogle Scholar
  48. [44]
    L. Waldmann, in “Encyclopedia of Physics”, Vol. 12, p. 295. Berlin: Springer. 1958.Google Scholar
  49. [45]
    V.F. Turchin, Medlennye neitrony. Moscow. 1963. - Engl. Translation, Slow Neutrons. New York: Davey & Co. 1965.Google Scholar
  50. [46]
    H. Hurwitz, Jr., M.S. Nelkin, and G. J. Habetler, Nucl. Sci. Eng. 1, 280 (1956).Google Scholar
  51. [47]
    I. Kuščer and G.C. Summerfield, Phys. Rev. 188, 1445 (1969).CrossRefADSMathSciNetGoogle Scholar
  52. [48]
    S. Chapman and T.G. Cowling, The Mathematical Theory of Non-Uniform Gases. Cambridge Univ. Press. 1939.Google Scholar
  53. [49]
    K. Andersen and K.E. Shuler, J. Chem. Phys. 40, 633 (1964).CrossRefADSMathSciNetGoogle Scholar
  54. [50]
    J. Lewins, Importance, The Adjoint Function. Oxford: Pergamon Press. 1965.Google Scholar
  55. [51]
    K.M. Case, Rev. Mod. Phys. 29, 651 (1957).CrossRefMATHADSMathSciNetGoogle Scholar
  56. [52]
    I. Kuščer and N.J. McCormick, Nucl. Sci. Eng. 26, 522 (1966).Google Scholar
  57. [53]
    B.V. Gnedenko, Kurs teorii veroyatnostei. Moscow: Gostehizdat. 1954.Google Scholar
  58. [54]
    W. Feller, An Introduction to Probability Theory and its Application, Vol. 2. New York: Wiley & Sons, 1966.Google Scholar
  59. [55]
    E.V. Tolubinskii, Teoriya processov perenosa. Kiev: Naukova dumka. 1969.Google Scholar
  60. [56]
    G.M. Wing, An Introduction to Transport Theory. New York: Wiley & Sons. 1962.Google Scholar
  61. [57]
    V.S. Vladimirov, Matematicheskye zadachi odnoskorostnoi teorii perenosa chastits. Trudy matem. Inst. im. Steklova 61, (1961).Google Scholar
  62. [58]
    K.M. Case and P.F. Zweifel, J. Math. Phys. 4, 1376 (1963).CrossRefMATHADSMathSciNetGoogle Scholar
  63. [59]
    J.T. Marti, Nukleonik 8, 159 (1966); Zschr. angew. Math. Phys. 18, 247 (1967).Google Scholar
  64. [60]
    H. Hejtmanek, Nukleonik 12, 145 (1969); J. Math. Phys. 11, 995 (1970); Transport Calculations by the Semigroup Method (unpublished).Google Scholar
  65. [61]
    I. Vidav, J. Math, Anal. Applic. 22, 144 (1968).CrossRefMATHGoogle Scholar
  66. [62]
    J. Mika, Studia Mathematica (Warsaw), 37, 213 (1970)MathSciNetGoogle Scholar
  67. J. Mika and R. Stankiewicz, Transport Theory Statist. Phys. 2, 55 (1972).CrossRefMATHGoogle Scholar
  68. [63]
    G. Scharf, Ilely. Phys. Acta 40, 929 (1967); 42, 5 (1969).MATHGoogle Scholar
  69. [64]
    C. Cercignani, J. Math. Phys. 9, 633 (1968).CrossRefMATHADSGoogle Scholar
  70. [65]
    J.-P. Guiraud, Comptes rendus 266A, 671 (1968); 268A, 1300 (1969)MATHMathSciNetGoogle Scholar
  71. [66]
    I. Kuščer, in Ref. 36, p. 380.Google Scholar
  72. [67]
    N.J. McCormick and I. Kuscer, Adv. Nuc1. Sci. Technol. 7 (to be published).Google Scholar
  73. [68]
    N. Corngold, in Ref. 34, p. 79, and in Ref. 37, p.851.Google Scholar
  74. [69]
    I. Kuščer, in Ref. 30, p. 243.Google Scholar
  75. [70]
    I. Kuščer and I. Vidav, J. Math. Anal. Applic. 25, 80 (1969).CrossRefMATHGoogle Scholar
  76. [71]
    J. Donning, B. Nicolaenko and J.K. Thurber, in Ref. 36, pp. 1, 36, 76, and in Ref. 37, p. 1007Google Scholar
  77. B. Nicolaenko and J.K. Thurber, in Ref. 38, pp. 96, 115, and in “The Boltzmann Equation” (Lecture Notes of Seminar, 1970–71, F.A. Grünbaum, ed.), pp. 125, 173, 211. New York: Courant Institute, NYU. 1972.Google Scholar
  78. [72]
    G. Placzek and W. Seidel, Phys. Rev. 72, 550 (1947)CrossRefADSMathSciNetGoogle Scholar
  79. G. Placzek, Phys. Rev. 72, 556 (1947)CrossRefADSMathSciNetGoogle Scholar
  80. C. Mark, Phys. Rev. 72, 558 (1947)CrossRefADSMathSciNetGoogle Scholar
  81. J. LeCaine, Phys. Rev. 72, 564 (1947).CrossRefADSMathSciNetGoogle Scholar
  82. [73]
    S. Albertoni and B. Montagnini, in Ref. 29, p. 239.Google Scholar
  83. [74]
    M. Borysiewicz and J. Mika, J. Math. Anal. Applic. 26, 461 (1970).CrossRefGoogle Scholar
  84. [75]
    E.P. Wigner and J.E. Wilkins, U.S. Report AECD 2275 (1944)Google Scholar
  85. J.E. Wilkins, U.S. Report CP-2481 (1944).Google Scholar
  86. [76]
    L. Dresner, Resonance Absorption in Nuclear Reactors. New York: Pergamon Press. 1960.Google Scholar
  87. [77]
    J.J. Mclnnerney, Nucl. Sci. Eng. 22, 215 (1969).Google Scholar
  88. [78]
    F.H. Clark, Adv. Nucl. Sci. Technol. 5, 95 (1969).Google Scholar
  89. [79]
    K.M. Case, Ann. Phys. (N.Y.) 9, 1 (1960).CrossRefMATHADSMathSciNetGoogle Scholar
  90. [80]
    C. Cercignani, Ann. Phys. 40, 454 (1966).CrossRefADSMathSciNetGoogle Scholar
  91. [81]
    H.G. Kaper, J.H. Ferziger and S.K. Loyalka, in Ref. 33, p. 95.Google Scholar
  92. [82]
    T. Asaoka, J. Nucl. Energy 22, 99 (1968)CrossRefADSGoogle Scholar
  93. Nucl. Sci. Eng. 34, 122 (1968).Google Scholar
  94. [83]
    M. Čopič, Nucl. Sci. Eng. (to be published).Google Scholar
  95. [84]
    M.M.R. Williams, Adv. Nucl. Sci. Technol. 7 (to be published).Google Scholar
  96. [85]
    N. Wiener and E. Hopf, Ber. Akad. Berlin, Math. Phys. Kl. (1931), p. 696.Google Scholar
  97. [86]
    E.L. Wachpress, Iterative Solution of Elliptic Systems, and Applications to. the Neutron Diffusion Equations in Reactor Physics. Englewood Cliffs, N.J.: Prentice-Hall. 1966.Google Scholar
  98. [87]
    H.G. Kaper,G.K. Leaf and A.J. Lindeman, U.S. Report ANL-7925 (1972).Google Scholar
  99. [88]
    M.A. Tavel and M.S. Zucker, Transport Theory Statist. Phys. 1, 115 (1971)Google Scholar
  100. [89]
    B.G. Carlson and K.D. Lathrop, in Ref. 22, p. 171.Google Scholar
  101. [90]
    M. Ribarič, Arch. Rational Mech. Anal. 8, 381 (1961); 15, 54 (1964); 16, 196 (1964).Google Scholar
  102. [91]
    K. Aoki and A. Shimizu, J. Nucl. Sci. Technol. 2, 149 (1965).CrossRefGoogle Scholar
  103. [92]
    G.E. Hunt, in Ref. 37, p. 655.Google Scholar
  104. [93]
    R. Aronson, Nucl. Sci. Eng. 27, 271 (1967)Google Scholar
  105. Transport Theory Statist. Phys. 1, 209 (1971).Google Scholar
  106. [94]
    R. Bellman, R. Kalaba, and G.M. Wing, J. Math. Phys. 1, 280 (1960).CrossRefMATHADSMathSciNetGoogle Scholar
  107. [95]
    H.C. van de Hulst and K. Grossman, in “The Atmospheres of Venus and Mars” (J.C. Brandt and M.B. McElroy, eds.) p. 35. New York: Gordon & Breach, 1968.Google Scholar
  108. [96]
    H,C. van de Hulst, J. Computational Phys. 3, 291 (1968).CrossRefADSGoogle Scholar
  109. [97]
    W. Pfeiffer and J.L. Shapiro, Nucl. Sci. Eng. 34, 336 (1968).Google Scholar
  110. [98]
    S. Pahor and P.F. Zweifel, J. Math. Phys. 10, 581 (1969).CrossRefMATHADSMathSciNetGoogle Scholar
  111. [99]
    G.C. Pomraning and M. Clark, Nucl. Sci. Eng. 16, 147 (1963)Google Scholar
  112. G.C. Pomraning,ibid. 29, 220 (1967).Google Scholar
  113. [100]
    S. Kaplan, Adv. Nucl. Sci. Technol. 5, 185 (1969).Google Scholar
  114. [101]
    S.K. Loyalka and H. Lang, Rarefied Gas Dynamics, 7th Symposium (in press).Google Scholar
  115. [102]
    C. Cercignani,in Ref. 37, p. 973.Google Scholar
  116. [103]
    M.S. Nelkin, Nucl. Sci. Eng. 7, 552 (1960).Google Scholar
  117. [104]
    R. Kladnik and I. Kuščer, Nucl. Sci. Eng. 11, 116 (1961); 13, 149 (1962).Google Scholar
  118. [105]
    T. Kahan, G. Rideau et P. Roussopoulos, Les méthodes d’approximation variationnelles dans la théorie des collisions atomiques et dans la physique des piles nucléaires. Mém. Sci. Math. 134. Paris: Gauthier-Villars. 1956.Google Scholar
  119. [106]
    S. Kaplan, Adv. Nucl. Sci. Technol. 3, 233 (1966).Google Scholar
  120. [107]
    J. Lewins, Adv. Nucl. Sci. Technol. 4, 309 (1968).Google Scholar
  121. [108]
    G. Goertzel and M.H. Kalos, Monte Carlo in Transport Problems, in Progress in Nuclear Energy, Ser. I: Physics and Mathematics. London: Pergamon Press. 1958.Google Scholar
  122. [109]
    E.D. Cashwell and C.J. Everett, The Monte Carlo Method for Random Walk Problems. New York: Pergamon Press. 1959.Google Scholar
  123. [110]
    Metod Monte Karlo v probleme perenosa izluchenii, (G.I. Marchuk, ed.). Moscow: Atomzidat. 1967.Google Scholar
  124. [111]
    J. Spanier and E.M. Gelbard, Monte Carlo Principles and Neutron Transport Problems. Reading, Mass.: Addison-Wesley, 1969.MATHGoogle Scholar
  125. [112]
    J.R. Askew, in Ref. 37, p. 905.Google Scholar
  126. [113]
    E.M. Gelbard, J.A. Davis, and L.A. Hageman, in Ref. 34, p. 157.Google Scholar
  127. [114]
    H. Greenspan, C.N. Kelber and D. Okrent, foreword to Ref. 22.Google Scholar
  128. [115]
    R.S. Varga, Matrix Iterative Analysis, p. 1. Englewood Cliffs, N.J.: Prentice-Hall. 1962.Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • Ivan Kuščer
    • 1
  1. 1.Department of PhysicsUniversity of LjubljanaYugoslavia

Personalised recommendations