The Statistical Interpretation of Non-Equilibrium Entropy

  • I. Prigogine
Part of the Acta Physica Austriaca book series (FEWBODY, volume 10/1973)


Boltzmann’s original scheme leading to the statistical interpretation of non-equilibrium entropy may be summarized as follows: Dynamics → Stochastic Process (kinetic equation) → Entropy. Recent computer experiments as well as spin echo experiments in dipolar coupled systems illustrate clearly the difficulties in Boltzmann’s derivation. Indeed, they display situations for which a Boltzmann type of a kinetic equation is not valid. The main purpose of this communication will be to show that we can now construct a more general microscopic model of entropy which shows the expected monotoneous approach to equilibrium even in non-Boltzmannian situations such as experiments involving “negative time evolution”.

First dynamic and thermodynamic descriptions of time evolution will be compared. The time inversion symmetry present in the dynamic equations is broken in the thermodynamic description (such as the Fourier equations). The relation between this symmetry breaking and causality will be discussed.

A brief summary of non-equilibrium statistical mechanics leading to the master equation will be given. While this master equation is rigorous it is not well suited for the discussion of the statistical interpretation of entropy mainly because of its non-local character in time. However it leads to a discussion of the dissipativity condition. Briefly this condition means, that the collision operator as defined in this theory is non-vanishing and has a part which is even in the Liouville-von Neumann operator L. As the result the time inversion symmetry of the dynamic equations is broken. Examples of simple systems for which the dissipativity condition can be rigorously verified (in an asymptotic sense when the system becomes large) will be given.

A formulation of dynamics in which the even part of L are explicitly displayed will be indicated. This formulation may be called the “causal” or “obviously causal” formulation of dynamics as causality is now incorporated into the differential equations (and not only as in the usual formulation in the integral representation of the solutions). The transformation from the initial representation to the causal representation conserves averages of all observables. It leads, therefore to equivalent (but not unitary equivalent) representations of dynamics. Examples will be given. In the causal formulation of dynamics there appears a Liapounoff function which is positive and can only decrease in time. This leads directly to a statistical model for non-equilibrium entropy. One of the important features of this new model is that it contains all non-equilibrium correlations which may be introduced through initial conditions. As an application, experiments involving “negative time evolution” will be discussed. It is shown that Loschmidt’s paradox is now solved as during each time interval in such experiments, the entropy production is now positive.

It is concluded that the second law of thermodynamics is valid for all initial value problems when formulated for mechanical systems which satisfy the dissipativity condition indicated above.


Master Equation Entropy Production Liouville Equation Thermodynamic Description Causal Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    L. Boltzmann, Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen, Wien. Ber. 66 275 (1872). see Wissenschaftliche Abhandlungen, Vol. 1., Verlag von Johann Ambrosius Barth, Leipzig, 1909.Google Scholar
  2. [2]
    L. Boltzmann, Mechanische Bedeutung des Zweiten Hauptsatzes, Wien. Ber. 53, 199 (1866).Google Scholar
  3. [3]
    L. Boltzmann, Der Zweite Hauptsatz der Mechanischen Wärmetheorie in Populare Schriften, Verlag von Johann Ambrosius Barth, Leipzig, 1919, p. 25.Google Scholar
  4. [4]
    H. Bergson, “Evolution Créatrice”, Eds. du Centenaire, Presses Universitaires de France, Paris 1963.Google Scholar
  5. [5]
    O. Spengler, Der Untergang des AbendlandesGoogle Scholar
  6. [6]
    For a modern survey, see L. Brillouin, Tensors, Dover New York, 1946.Google Scholar
  7. [7]
    A. Kronig, Ann. Physik, 99, 315 (1856).ADSGoogle Scholar
  8. [8]
    R. Clausius, Ann. Physik, 100, 353 (1857).ADSGoogle Scholar
  9. [9]
    J.C. Maxwell, Phil. Mag., 19, 19 (1860).Google Scholar
  10. [10]
    L. Boltzmann, Wien. Ber., 58, 517 (1869).Google Scholar
  11. [11]
    see P. Glansdorff & I. Prigogine, Stability, Structure and Fluctuations, Wiley-Interscience, 1971, french edition, Masson, Paris, 1971.Google Scholar
  12. [12]
    J.0. Hirschfelder, C.F. Curtiss & R.B. Bird, The Molecular Theory of Gases and Liquids, Wiley, New York (1959).Google Scholar
  13. [13]
    B.J. Alder & T.E. Wainwright, J. Chem. Phys., 33, 1434 (1960).CrossRefADSMathSciNetGoogle Scholar
  14. [14]
    A. Bellemans and J. Orban, Phys. Letters 24A, 620 (1967).ADSGoogle Scholar
  15. [15]
    see P.T. Ehrenfest, Begriffliche Grundlagen der Statistischen Auffassung der Mechanik, Encycl. Math. Wiss. 4, 4 (1911).Google Scholar
  16. [16]
    E. Zermelo, Ann. Physik, 57, 485 (1896); 59, 793 (1896).MATHADSGoogle Scholar
  17. [17]
    J. Loschmidt, Wien. Ber., 73, 139 (1876).Google Scholar
  18. [18]
    see specially L. Boltzmann, Lectures on Gas Theory, §§ 87–91, An English translation by St. G. Brush is available, University of California Press, 1964.Google Scholar
  19. [19]
    J.C. Powless and P. Mansfield, Phys. Letters, 2, 58 (1962).CrossRefADSGoogle Scholar
  20. [20]
    P. Mansfield, Phys. Rev., 137, 1961 (1965).CrossRefADSGoogle Scholar
  21. [21]
    W.K. Rhim, A. Pines and J.S. Waugh, Phys. Rev. B3, 684 (1971).CrossRefADSGoogle Scholar
  22. [22]
    D. Walgraef and P. Brockmans, Physica 59, 37 (1972).CrossRefADSGoogle Scholar
  23. [23]
    L. Boltzmann, Wien. Ber., 75, 62 (1877).Google Scholar
  24. [24]
    S.H. Burbury, Nature 51, 78 (1894).ADSGoogle Scholar
  25. [25]
    M. Planck, Thermodynamik, Berlin & Leipzig, De Gruyter, 1930, p. 83.MATHGoogle Scholar
  26. [26]
    S.R. de Groot and P. Mazur, Non Equilibrium Thermodynamics, North Holland Publ. Co., Amsterdam, 1962.Google Scholar
  27. [27]
    I. Prigogine, Thermodynamics of Irreversible Processes, 3rd. edition, Wiley-Interscience, New York, 1967.Google Scholar
  28. [28]
    R. Graham and H. Haken, Phys. Lett. 29A, 530 (1969).CrossRefGoogle Scholar
  29. [29]
    R. Balescu, Statistical Mechanics of Charged Particles, Wiley-Interscience, New York, 1963.MATHGoogle Scholar
  30. [30]
    I. Prigogine, Non Equilibrium Statistical Mechanics, Wiley-Interscience, New York, 1962.MATHGoogle Scholar
  31. [31]
    Cl. George, I. Prigogine and L. Rosenfeld, Koningl. Dansk. Vid. Mat-Phys. Medd. 38, 12, (1972).MathSciNetGoogle Scholar
  32. [32]
    I. Prigogine, Cl. George, F. Henin and L. Rosenfeld, to appear Proc. Roy. Swedish Acad., Stockholm, 1972.Google Scholar
  33. [33]
    Cl. George, Physica, to appear 1972.Google Scholar
  34. [34]
    M. Reichenbach, The Direction of Time, Univ. California Press, Berkeley and Los Angeles, 1956.Google Scholar
  35. [35]
    O. Costa de Beauregard, Information and Irreversibility Problems, in Time in Science and Philosophy, ed. by J. Zeman, Czechoslovak Academy of Sciences, Prague 1971, p. 11.Google Scholar
  36. [36]
    M. Baus, Acad. Roy. Belg. Bull. Cl. Sci., 53, 1291, 1332, 1352, (1967).Google Scholar
  37. [37]
    L. Lanz and L.A. Lugiato, Physica 44, 532 (1969).CrossRefMATHADSMathSciNetGoogle Scholar
  38. [38]
    A. Grécos, Physica 51, 50 (1970).CrossRefGoogle Scholar
  39. [39]
    see M. Kac, Probability and related topics in physical sciences, Interscience, New York, 1959.Google Scholar
  40. [40]
    see specially the work of P. Résibois, M. De Leener and others in Physica and Phys. Rev. during the years 1966, 1969 and 1971.Google Scholar
  41. [41]
    I. Prigogine and P. Résibois, Atti di Simposia Lagrangiano, Accademia delle Science, Torino, 1964.Google Scholar
  42. [42]
    R. Balescu,Physica 36, 433 (1967).ADSGoogle Scholar
  43. [43]
    A. Einstein and W.Ritz, Phys. Zs., 10, 323 (1909).Google Scholar
  44. [44]
    G. Stey, to appear Physica 1972.Google Scholar
  45. [45]
    A. Grécos and I. Prigogine, Physica 59, 77 (1972).CrossRefADSMathSciNetGoogle Scholar
  46. [46]
    A. Grécos and I. Prigogine,P.N.A.S. 69, 1629 (1972).Google Scholar
  47. [47]
    F. Henin and M. De Haan, papers to appear in Physica and Acad. Roy. Belg., Bull. Cl. Sc. 1972.Google Scholar
  48. [48]
    I.Prigogine and G. Severne, Physica 32,1376 (1966),G.Severne, Physical 61, 307 (1972).Google Scholar
  49. [49]
    I. Prigogine and A. Grécos, Volume in honour of H.Fröhlich, ed. by H. Haken, to appear 1973.Google Scholar
  50. [50]
    A. Grécos, private communicationGoogle Scholar
  51. [51]
    I. Prigogine, Cl. George and F. Henin, Physica 45, 418 (1969).CrossRefADSMathSciNetGoogle Scholar
  52. [52]
    R. Balescu and J. Wallenborn, Physica 54, 477 (1971).CrossRefADSMathSciNetGoogle Scholar
  53. [53]
    A.I. Khinchine, Mathematical Foundations of Informations Theory, Dover Publ. Inc., New York, 1957.Google Scholar
  54. [54]
    Duk In Choi, Acad. Roy. Belg. Bull. Cl. Sci. 47, 1054 (1971)Google Scholar
  55. [55]
    A.S. Eddington, The Nature of the Physical World, Cambridge University Press, 1929.Google Scholar
  56. [56]
    I. Prigogine, La Naissance du temps, Communication at the “Académie Internationale de Philosophie des Sciences”, Drongen-Gand, September 1972 and also Acad. Roy. Belg. Bull. Cl. Sci. to appear 1972.Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • I. Prigogine
    • 1
    • 2
  1. 1.Faculté des SciencesUniversité Libre de BruxellesBelgium
  2. 2.Center for Statistical MechanicsUniversity of TexasAustinUSA

Personalised recommendations