Advertisement

Non-Equilibrium Angular Momentum Polarization in Rotating Molecules

  • J. J. M. Beenakker
Conference paper
Part of the Acta Physica Austriaca book series (FEWBODY, volume 10/1973)

Abstract

In a non-equilibrium dilute gas of rotating molecules the one particle distribution function can be anisotropic in internal angular momentum J. The presence of this J “polarization” distinguishes the behaviour of rotating molecules from that of molecules with non-degenerate internal states.

Keywords

Collision Operator Effective Cross Section Particle Distribution Function High Order Polynomial Linearize Boltzmann Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Waldmann, L., Z. Naturforsch. 12a (1957) 660–662; 13a (1958) 609–620.MATHADSMathSciNetGoogle Scholar
  2. [2]
    Snider, R.F., J.Chem.Phys. 32 (1960) 1051–1060.CrossRefADSMathSciNetGoogle Scholar
  3. [3]
    Kagan, Yu.M. and Afanas’ev, A.M., Zh.Eksp.Teor.Fiz. 41 (1961) 1536–1545. Transi. Sov.Phys. --JETP 14 (1962) 1096–1101.Google Scholar
  4. [4]
    Beenakker, J.J.M., Festkörperprobleme 8 (1968) 275–311.Google Scholar
  5. [5]
    Beenakker, J.J.M. and McCourt, F.R., Ann.Rev.Phys. Chem. 21 (1970) 47–68.CrossRefADSGoogle Scholar
  6. [6]
    Hermans, L.J.F., Koks, J.M., Knaap, H.F.P. and Beenakker, J.J.M., Phys.Lett. 30A (1969) 139–140.CrossRefGoogle Scholar
  7. [7]
    Hermans, L.J.F., Koks, J.M., Hengeveld, A.F., Knaap, H.F.P., Physica 50 (1970) 410–432.CrossRefADSGoogle Scholar
  8. [8]
    Levi, A.C. and McCourt, F.R., Physica 38 (1968) 415–437.CrossRefADSGoogle Scholar
  9. [9]
    Senftleben, H., Ann.Phys. 15 (1965) 273–277.CrossRefGoogle Scholar
  10. [10]
    Tommasini, F., Levi, A.C., Scoles, G., de Groot, J.J., van den Broeke, J.W., van den Meijdenberg, C.J.N. and Beenakker, J.J.M., Physica 49 (1970) 299–341.Google Scholar
  11. [11]
    Borman, V.D., Gorelik, L.L., Nikolaev, B.I., Sinitsyn, V.V. and Troyan, V.I., Zh.Eksp.Teor.Fiz. 56 (1969) 1788–1795.Google Scholar
  12. [12]
    De Groot, J.J., van den Broeke, J.W., Martinius, H.J. and van den Meijdenberg, C.J.N., Physica 49, (1970) 342–344.CrossRefGoogle Scholar
  13. [13]
    Beenakker, J.J.M., Coope, J.A.R. and Snider, R.F., Phys.Rev. A4 (1971) 788–796.CrossRefADSGoogle Scholar
  14. [14]
    Coope, J.A.R. and Snider, R.F., J.Che.Phys. 56 (1972) 2056–2071.CrossRefADSGoogle Scholar
  15. [15]
    De Groot, S.R. and Mazur, P., Nonequilibrium Thermodynamics, Amsterdam: North-Holland (1962) 501 pp.Google Scholar
  16. [16]
    Hulsman, H. and Knaap, H.F.P., Physica 50 (1970) 565–572.CrossRefADSGoogle Scholar
  17. [17]
    Hulsman, H., van Waasdijk, E.J., Burgmans, A.L.J., Knaap, H.F.P. and Beenakker, J.J.M., Physica 50 (1970) 53–76.CrossRefADSGoogle Scholar
  18. [18]
    Korving, J., Physica 46 (1970) 619–625.CrossRefADSGoogle Scholar
  19. [19]
    Hess, S., Phys.Lett. 30A (1969) 239–240.CrossRefGoogle Scholar
  20. [20]
    Baas, F., Phys.Lett. 36A (1971) 107–108.CrossRefGoogle Scholar
  21. [21]
    Klein, W.M., Hoffman, D.K. and Dahler, J.S., J.Chem. Phys. 49 (1968) 2321–2333.CrossRefADSGoogle Scholar
  22. [22]
    McCourt, F.R., Knaap, H.F.P. and Moraal, H., Physica 43 (1969) 485–512.CrossRefADSGoogle Scholar
  23. [23]
    Moraal, H., McCourt, F.R. and Knaap, H.F.P., Physica 45 (1969) 455–468.CrossRefADSGoogle Scholar
  24. [24]
    Chapman, S. and Cowling, T.G., The mathematical theory of non uniform gases, Cambridge, chapter 10.Google Scholar
  25. [25]
    Cooper, V.G., May, A.D., Hara, E. and Knaap, H.F.P. Phys.Lett. 27A (1968) 52–53.CrossRefGoogle Scholar
  26. [26]
    Hess, S., Z.Naturforsch. 24a (1969) 1852–1853.ADSGoogle Scholar
  27. [27]
    Hess, S., Springer Tracts Mod. Phys.54 (1970) 136176.Google Scholar
  28. [28]
    Keijser, R.A.J. et al., to be published.Google Scholar
  29. [29]
    Coope, J.A.R. and Snider, R.F., J. Chem. Phys. 56 (1972) 2049–2055.CrossRefADSGoogle Scholar
  30. [30]
    Burgmans, A.L.J., Thesis Leiden (1972); Burgmans, A.L.J. et al., Physica, to be published.Google Scholar
  31. [31]
    Moraal, H. and Snider, R.F., Chem. Phys. Lett. 9 (1971) 401–405.CrossRefADSGoogle Scholar
  32. [32]
    Chen, F.M., Moraal, H. and Snider, R.F., J. Chem. Phys. 57 (1972) 542–561.CrossRefADSGoogle Scholar
  33. [33]
    Prangsma, G.J., Thesis Leiden (1971); Prangsma, G.J., Burgmans, A.L.J., Knaap, H.F.P. and Beenakker, J.J.M., Physica, to be published.Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • J. J. M. Beenakker
    • 1
  1. 1.Kamerlingh Onnes Laboratorium der RijksuniversiteitLeidenNederland

Personalised recommendations