Flow-Birefringence in Gases an Example of the Kinetic Theory Based on the Boltzmann-Equation for Rotating Particles

Conference paper
Part of the Acta Physica Austriaca book series (FEWBODY, volume 10/1973)


Flow birefringence is an example for the nonequilibrium alignment phenomena which occur in polyatomic gases. In this paper the attention is focussed on gases of linear molecules. Firstly, it is pointed out that the anisotropic part of the electric permeability tensor which is responsible for birefringence is proportional to the (2nd rank) tensor polarization of the rotational molecular angular momentum. Then, the collision-induced tensor polarization set up by a viscous flow is calculated from transport-relaxation equations which, in turn, are derived from the Waldmann-Snider equation, a Boltzmann equation for rotating molecules. Thus the flow birefringence is expressed in terms of properties of single molecules and of their binary scattering amplitude. A relation between flow-birefringence and the Senftleben-Beenakker effect on the viscosity is established. Furthermore, the phenomenon reciprocal to flow birefringence is considered. If a deviation of the tensor polarization from its equilibrium value is maintained externally, the collision-induced coupling between tensor polarization and the friction pressure tensor gives rise to an anisotropy in velocity space. Finally,it is briefly discussed that effects similar to those observed in polyatomic gases should also occur with atomic vapors, provided that the atoms have a nonvanishing electron-orbital angular momentum.


Angular Momentum Boltzmann Equation Couette Flow Rotational State Tensor Polarization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    L. Boltzmann, Wien Ber.66,275 (1872)Google Scholar
  2. [2]
    J.C. Maxwell, Proc. Roy. Soc.London (A).22,46 (1873)Google Scholar
  3. Pogg. Ann. Physik 151, 151 (1874) )Google Scholar
  4. [3]
    D. Vorlnder and R. Walter, Z.Phys.Chem.118,1 (1925)Google Scholar
  5. [4]
    G. Szivessy,in Handbuch d. Physik (eds. H. Geigerand K. Scheel) 21, 875 Berlin 1929Google Scholar
  6. A. Peterlin and H.A. Stuart, in Hand-und Jahrbuch d. Chem. Phys. (ed. Eucken-Wolf) 8, 113 (1943)Google Scholar
  7. J. Frenkel,Kinetic Theory of Liquids,1943(Dover,New York, 1955)Google Scholar
  8. [5]
    L. Waldmann, Nuovo Cimento 14, 898 (1959)Google Scholar
  9. Z. Naturforsch.15a,19 (1960)Google Scholar
  10. [6]
    Y. Kagan and A.M. Afanasev, Soviet Phys. JETP 14, 1096 (1962)Google Scholar
  11. Y. Kagan and L. Maksimov, Soviet Phys. JETP14,604 (1962)Google Scholar
  12. [7]
    H. Senftleben, Phys. Z.31, 822, 961 (1930)Google Scholar
  13. J.J.M. Beenakker, G. Scoles, H.F.P. Knaap, and R.M. Jonkman, Phys. Letters 2, 5 (1962)Google Scholar
  14. [8]
    J.J.M. Beenakker and F.R. McCourt, Ann. Rev. Phys. Chem. 21, 47 (1970)CrossRefADSGoogle Scholar
  15. J.S. Dahler and D.K. Hoffmann, in Transfer and storage of energy by molecules, vol.3, ed. G.M. Burnett, Wiley, New York 1970Google Scholar
  16. [9]
    S. Hess, Phys. Letters 30A,239 (1969)Google Scholar
  17. Springer Tracts in Mod. Phys. 54, 136 (1970)Google Scholar
  18. [10]
    L. Waldmann, Z. Naturforsch.12a, 660 (1957); 13a 609 (1958)Google Scholar
  19. R.F. Snider,J. Chem. Phys.32,1051 (1960)CrossRefADSMathSciNetGoogle Scholar
  20. S. Hess,Z. Naturforsch.22a,1871 (1967)Google Scholar
  21. A. Tip, Physica52 493,1971Google Scholar
  22. R.F. Snider and B.C. Sanctuary, J. Chem. Phys.,55,1555 (1971)CrossRefADSGoogle Scholar
  23. [11]
    F. Baas, Phys. Letters, 36A, 107 (1971)Google Scholar
  24. [12]
    M.R. Lucas, Compt. Rend. 206, 827 (1938)Google Scholar
  25. N.C. Hilyard and H.G. Jerrard,J.Appl.Phys.33,3407(1938)Google Scholar
  26. H.G. Jerrard, Ultrasonics 2,74 (1964)CrossRefGoogle Scholar
  27. W.A. Riley and W.R. Klein, J. Acoust. Soc. Am.45,587 (1969)Google Scholar
  28. [13]
    S. Hess, in Proc. 7th Internat. Symp. on Rarefied Gas Dynamics (Pisa 1970 ), Academic Press, New York 1971Google Scholar
  29. [14]
    S. Hess, Z. Naturforsch. 24a, 1675 (1969)Google Scholar
  30. [15]
    S. Hess and L. Waldmann, Z. Naturforsch. 26a,1057,(1971)Google Scholar
  31. [16]
    S. Hess and L. Waldmann, Z. Naturforsch. 21a, 1529, (1966); 23a, 1893 (1968)Google Scholar
  32. [17]
    S. Hess and W.E. Köhler, Z. Naturforsch. 23a, 1903, (1968);Google Scholar
  33. W.E. Köhler,S. Hess,and L. Waldmann,Z. Naturforsch.25a,336(1970)Google Scholar
  34. [18]
    F.R. McCourt and R.F. Snider, J. Chem. Phys. 47, 4117 (1967)Google Scholar
  35. [19]
    V.G. Cooper, A.D. May, E.H. Hara, and H.F.P. Knaap, Can. J. Phys. 46, 2019 (1968)Google Scholar
  36. R.A.J. Keijser,M. Jansen,V.G. Cooper,and H.F.P. Knaap,Physica51, 593(1971)CrossRefADSGoogle Scholar
  37. [20]
    S. Hess, Phys. Letters 29A, 108 (1969)Google Scholar
  38. Z. Naturforsch. 24a,1852 (1969); 25a, 350 (1970)Google Scholar
  39. [21]
    A.G. St. Pierre, W.E. Köhler, and S. Hess, Z. Naturforsch. 27a, 721 (1972)Google Scholar
  40. [22]
    S. Hess, Physica 61, 9, 80 (1972); in Festkörperprobleme XII, 649 ed. 0. Madelung, Vieweg, Braunschweig, 1972Google Scholar
  41. [23]
    H. Senftleben, Physik. Z. 32, 550 (1931)Google Scholar
  42. D. Stichtig,Ann. Physik38, 274 (1940)Google Scholar
  43. [24]
    P. Toschek,Z. Physik 187, 56 (1965).Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • S. Hess
    • 1
  1. 1.Institut für Theoretische PhysikUniversität Erlangen-NürnbergErlangenGermany

Personalised recommendations