Skip to main content

Flow-Birefringence in Gases an Example of the Kinetic Theory Based on the Boltzmann-Equation for Rotating Particles

  • Conference paper
The Boltzmann Equation

Part of the book series: Acta Physica Austriaca ((FEWBODY,volume 10/1973))

Abstract

Flow birefringence is an example for the nonequilibrium alignment phenomena which occur in polyatomic gases. In this paper the attention is focussed on gases of linear molecules. Firstly, it is pointed out that the anisotropic part of the electric permeability tensor which is responsible for birefringence is proportional to the (2nd rank) tensor polarization of the rotational molecular angular momentum. Then, the collision-induced tensor polarization set up by a viscous flow is calculated from transport-relaxation equations which, in turn, are derived from the Waldmann-Snider equation, a Boltzmann equation for rotating molecules. Thus the flow birefringence is expressed in terms of properties of single molecules and of their binary scattering amplitude. A relation between flow-birefringence and the Senftleben-Beenakker effect on the viscosity is established. Furthermore, the phenomenon reciprocal to flow birefringence is considered. If a deviation of the tensor polarization from its equilibrium value is maintained externally, the collision-induced coupling between tensor polarization and the friction pressure tensor gives rise to an anisotropy in velocity space. Finally,it is briefly discussed that effects similar to those observed in polyatomic gases should also occur with atomic vapors, provided that the atoms have a nonvanishing electron-orbital angular momentum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Boltzmann, Wien Ber.66,275 (1872)

    Google Scholar 

  2. J.C. Maxwell, Proc. Roy. Soc.London (A).22,46 (1873)

    Google Scholar 

  3. Pogg. Ann. Physik 151, 151 (1874) )

    Google Scholar 

  4. D. Vorlnder and R. Walter, Z.Phys.Chem.118,1 (1925)

    Google Scholar 

  5. G. Szivessy,in Handbuch d. Physik (eds. H. Geigerand K. Scheel) 21, 875 Berlin 1929

    Google Scholar 

  6. A. Peterlin and H.A. Stuart, in Hand-und Jahrbuch d. Chem. Phys. (ed. Eucken-Wolf) 8, 113 (1943)

    Google Scholar 

  7. J. Frenkel,Kinetic Theory of Liquids,1943(Dover,New York, 1955)

    Google Scholar 

  8. L. Waldmann, Nuovo Cimento 14, 898 (1959)

    Google Scholar 

  9. Z. Naturforsch.15a,19 (1960)

    Google Scholar 

  10. Y. Kagan and A.M. Afanasev, Soviet Phys. JETP 14, 1096 (1962)

    Google Scholar 

  11. Y. Kagan and L. Maksimov, Soviet Phys. JETP14,604 (1962)

    Google Scholar 

  12. H. Senftleben, Phys. Z.31, 822, 961 (1930)

    Google Scholar 

  13. J.J.M. Beenakker, G. Scoles, H.F.P. Knaap, and R.M. Jonkman, Phys. Letters 2, 5 (1962)

    Google Scholar 

  14. J.J.M. Beenakker and F.R. McCourt, Ann. Rev. Phys. Chem. 21, 47 (1970)

    Article  ADS  Google Scholar 

  15. J.S. Dahler and D.K. Hoffmann, in Transfer and storage of energy by molecules, vol.3, ed. G.M. Burnett, Wiley, New York 1970

    Google Scholar 

  16. S. Hess, Phys. Letters 30A,239 (1969)

    Google Scholar 

  17. Springer Tracts in Mod. Phys. 54, 136 (1970)

    Google Scholar 

  18. L. Waldmann, Z. Naturforsch.12a, 660 (1957); 13a 609 (1958)

    Google Scholar 

  19. R.F. Snider,J. Chem. Phys.32,1051 (1960)

    Article  ADS  MathSciNet  Google Scholar 

  20. S. Hess,Z. Naturforsch.22a,1871 (1967)

    Google Scholar 

  21. A. Tip, Physica52 493,1971

    Google Scholar 

  22. R.F. Snider and B.C. Sanctuary, J. Chem. Phys.,55,1555 (1971)

    Article  ADS  Google Scholar 

  23. F. Baas, Phys. Letters, 36A, 107 (1971)

    Google Scholar 

  24. M.R. Lucas, Compt. Rend. 206, 827 (1938)

    Google Scholar 

  25. N.C. Hilyard and H.G. Jerrard,J.Appl.Phys.33,3407(1938)

    Google Scholar 

  26. H.G. Jerrard, Ultrasonics 2,74 (1964)

    Article  Google Scholar 

  27. W.A. Riley and W.R. Klein, J. Acoust. Soc. Am.45,587 (1969)

    Google Scholar 

  28. S. Hess, in Proc. 7th Internat. Symp. on Rarefied Gas Dynamics (Pisa 1970 ), Academic Press, New York 1971

    Google Scholar 

  29. S. Hess, Z. Naturforsch. 24a, 1675 (1969)

    Google Scholar 

  30. S. Hess and L. Waldmann, Z. Naturforsch. 26a,1057,(1971)

    Google Scholar 

  31. S. Hess and L. Waldmann, Z. Naturforsch. 21a, 1529, (1966); 23a, 1893 (1968)

    Google Scholar 

  32. S. Hess and W.E. Köhler, Z. Naturforsch. 23a, 1903, (1968);

    Google Scholar 

  33. W.E. Köhler,S. Hess,and L. Waldmann,Z. Naturforsch.25a,336(1970)

    Google Scholar 

  34. F.R. McCourt and R.F. Snider, J. Chem. Phys. 47, 4117 (1967)

    Google Scholar 

  35. V.G. Cooper, A.D. May, E.H. Hara, and H.F.P. Knaap, Can. J. Phys. 46, 2019 (1968)

    Google Scholar 

  36. R.A.J. Keijser,M. Jansen,V.G. Cooper,and H.F.P. Knaap,Physica51, 593(1971)

    Article  ADS  Google Scholar 

  37. S. Hess, Phys. Letters 29A, 108 (1969)

    Google Scholar 

  38. Z. Naturforsch. 24a,1852 (1969); 25a, 350 (1970)

    Google Scholar 

  39. A.G. St. Pierre, W.E. Köhler, and S. Hess, Z. Naturforsch. 27a, 721 (1972)

    Google Scholar 

  40. S. Hess, Physica 61, 9, 80 (1972); in Festkörperprobleme XII, 649 ed. 0. Madelung, Vieweg, Braunschweig, 1972

    Google Scholar 

  41. H. Senftleben, Physik. Z. 32, 550 (1931)

    Google Scholar 

  42. D. Stichtig,Ann. Physik38, 274 (1940)

    Google Scholar 

  43. P. Toschek,Z. Physik 187, 56 (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Springer-Verlag

About this paper

Cite this paper

Hess, S. (1973). Flow-Birefringence in Gases an Example of the Kinetic Theory Based on the Boltzmann-Equation for Rotating Particles. In: Cohen, E.G.D., Thirring, W. (eds) The Boltzmann Equation. Acta Physica Austriaca, vol 10/1973. Springer, Vienna. https://doi.org/10.1007/978-3-7091-8336-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-8336-6_13

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-8338-0

  • Online ISBN: 978-3-7091-8336-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics