Advertisement

Chemistry and Physiology of Ecdysoids

  • K. Sláma
  • M. Romaňuk
  • F. Šorm

Abstract

The history of the diseovery of insect moulting hormone began with papers by the Polish entomologist Kopeč [172, 173] whieh demonstrated for the first time that the moulting process was eontrolled by a humoral factor. Further significant contributions to the physiology of the moulting process carne from Wigglesworth [323]. Of great importance for the chemistry of moulting hormones was the observation that the moulting process is controlled by a factor present in the prothoracic glands (Fujkuda [68–70]). Plagge and Becker [14, 234] discovered that moulting hormone could be extracted from blowfly (Calliphora erythrocephala) larvae with boiling ethanol.

Keywords

Juvenile Hormone Imaginal Disc Salivary Gland Cell Tetrahedron Letter Hydroxylic Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Adelung, D.: Die Ausschüttung und Funktion von Häutungshormon während eines Zwischenhäutungs-Intervalls bei der Strandkrabbe Carcinus maenas L. Z. Naturforsch. 24, 1447–1455 (1969).Google Scholar
  2. [2]
    Adelung, D., and P. Karlson: Eine verbesserte, sehr empfindliche Methode zur biologischen Auswertung des Insektenhormones Ecdyson. J. Insect Physiol. 15, 1301–1307 (1969).CrossRefGoogle Scholar
  3. [3]
    Agui, N., S. Yagi, and M. Fukaya: Induction of monlting of cultivated integument taken from a diapausing rice stem borer larva in the presence of eedysterone. Appl. Entomol. Zool. 4, 156–157 (1969).Google Scholar
  4. [4]
    Applebaum, S. W., and L. I. Gilbert: Stimulation of adenyl cyelase in pupal wing epidermis by β-ecdysone. Develop. Biol. 27, 165–175 (1972).PubMedCrossRefGoogle Scholar
  5. [5]
    Arking, R., and E. Shaaya: Effect of ecdysone on protein synthesis in the larval fat body of Calliphora. J. Insect Physiol. 15, 287–296 (1966).CrossRefGoogle Scholar
  6. [6]
    Ashburner, M.: Function and structure of polytene chromosomes during insect development. Advan. Insect Physiol. 7, 1–95 (1970).CrossRefGoogle Scholar
  7. [7]
    Balesdent, M. L.: Action d’une ecdysone de synthèse sur la mue et sur la sexualité du crustacé isopode femelle Asellus aquaticus L. C.R. Acad. Sci. (Paris) 273, 1972–1974 (1971).Google Scholar
  8. [8]
    Berreur, P., and G. Fraenkel: Puparium formation in flies: Contraction to puparium induced by ecdysone. Science 164, 1182–1183 (1969).PubMedCrossRefGoogle Scholar
  9. [9]
    Barritt, L. C., and L. M. Birt: Prothoracic gland hormone in the sheep blowfly, Lucilia cuprina. J. Insect Physiol. 16, 671–677 (1970).CrossRefGoogle Scholar
  10. [10]
    Barritt, L. C., and L. M. Birt: Development of Lucilia cuprina: Correlation of biochemical and morphological events. J. Insect Physiol. 17, 1169–1183 (1971).CrossRefGoogle Scholar
  11. [11]
    Barth, B. H., Jr., P. P. Bunyaed, and T. H. Hamilton: RNA metabolism in pupae of the oak silkworm, Antheraea pernyi: The effects of diapause, development and injury. Proc. nat. Acad. Sci. (Amer.) 52, 1572–1580 (1964).CrossRefGoogle Scholar
  12. [12]
    Barton, D. H. R., P. G. Feakins, J. P. Poyser, and P. G. Sammes: A synthesis of the insect moulting hormone, ecdysone and related eompounds. J. Chem. Soc. C 1970, 1584–1591.Google Scholar
  13. [13]
    Beck, S. D., and J. L. Shane: Effects of ecdysone on diapause in the European corn borer, Ostrinia nubialis. J. Insect Physiol. 15, 721–730 (1969).CrossRefGoogle Scholar
  14. [14]
    Becker, R.: Über Versuche zur Anreicherung und physiologische Charakterisierang des Wirkstoffes der Puparisierung. Biol. Zbl. 61, 360 (1941).Google Scholar
  15. [15]
    Becker, E., and E. Plagge: Über das die Pupariumbildung auslösende Hormon der Fliegen. Biol. Zbl. 59, 326–341 (1939).Google Scholar
  16. [16]
    Berendes, H. D.: The hormone ecdysone as effector of speeific changes in the pattern of gene activities of Drosophila hydei. Chromo-soma 22, 274–293 (1967).Google Scholar
  17. [17]
    Berendes, H. D., and E. Willart: Ecdysone-related changes at the nuclear and cytoplasmic level of Malpighian tubule cells in Drosophila. J. Insect Physiol. 17, 2337–2350 (1971).PubMedCrossRefGoogle Scholar
  18. [18]
    Berry, S. J., A. Krishnakumaran, H. Oberiander, and H. A. Schneiderman: (see reference No. 18 on p. 282).Google Scholar
  19. [19]
    Bever, W. van, F. Kohbn, V. V. Ranade, and R. E. Counsell: Synthesis of the steroid rubrosterone. Chem. Commun. 1970, 758.Google Scholar
  20. [20]
    Bohm, G. A.: Ecdysontiter und Blutbild bei Calliphora vidria Rob. Desv. unter normalen und experimentellen Bedingungen. Mitt. deutsch. Ent. Ges. 27, 52–59 (1968).Google Scholar
  21. [21]
    Bohm, G. A.: Histological changes in the salivary glands of Calliphora vicina R. D. and their possible control by ecdyson. Endocrin. Exp. 5, 97–100 (1971).Google Scholar
  22. [22]
    Bückmann, D.: Die Auslösung der Umfärbung durch das Häutungshormon bei Cerura vinula L. (Lepidoptera, Notodontidae). J. Insect Physiol. 3, 159–189 (1959).CrossRefGoogle Scholar
  23. [23]
    Bulliére, F., and D. Bulliére: Régénération, différenciation et ecdysones chez l’embryon de Blabera craniifer (Insecte Dictyoptére) en culture in vitro. C. R. Acad. Sci. (Paris) 273, 955–958 (1971).Google Scholar
  24. [24]
    Burdette, W. J.: Changes in titer of ecdyson in Bombyx mori during metamorphosis. Science 135, 432 (1962).PubMedCrossRefGoogle Scholar
  25. [25]
    Burdette, W. J., and R. L. Coda: Effect of ecdysone on incorporation of 14C-leucine into hepatic protein in vitro. Proc. Soc. Exp. Biol. Med. 112, 216–217 (1963).PubMedGoogle Scholar
  26. [26]
    Burdette, W. J., and M. Kobayashi: Response of chromosomal puffs to crystalline hormones in vivo. Proc. Soc. Exp. Biol. Med.131, 209–213 (1969).PubMedGoogle Scholar
  27. [27]
    Burdette, W. J., and R. C. Richards: Alteration of the growth of mammalian cells in vitro by ecdysone extract. Nature 189, 666–668 (1961).PubMedCrossRefGoogle Scholar
  28. [28]
    Butenandt, A., and P. Karlson: Überdie Isolierung eines Metamorphose-Hormons der Insekten in kristallisierter Form. Z. Natur-forsch. 9 b, 389–391 (1954).Google Scholar
  29. [29]
    Carlisle, D. B., and P. E. Ellis: Bracken and locust ecdysones: Their effect on moulting in the desert locust. Science 159, 1472–1474 (1968).PubMedCrossRefGoogle Scholar
  30. [30]
    Chaudhaby, K. D., P. J. Lupien, and C. Hinse: Effect of ecdysone on glutamic decarboxylase in rat brain. Experientia 25, 250–251 (1969).CrossRefGoogle Scholar
  31. [31]
    Cherbas, L., and P. Cherbas: Distribution and metabolism of α-ecdysone in pupae of the silkworm Antheraea polyphemus. Biol. Bull. Woods Hole 138, 115–128 (1970).CrossRefGoogle Scholar
  32. [32]
    Chino, H., L. I. Gelbert, J. B. Siddall, and W. Hafferl: Studies on ecdysone transport in insect haemolymph. J. Insect Physiol. 16, 2033–2040 (1970).PubMedCrossRefGoogle Scholar
  33. [33]
    Chong, Y. K., M. N. Galbraith, and D. H. S. Horn: Isolation of deoxycrustecdysone, deoxyecdysone, and α-ecdysone from the fern Blechnum minus. Chem. Commun. 1970, 1217–1218.Google Scholar
  34. [34]
    Clayton, R. B.: The utilization of steroids by insects. (Review). J. Lipid Res. 5, 3–19 (1964).Google Scholar
  35. [35]
    Clever, U.: Genaktivitäten in den Riesenchromosomen von Chironomus tentans und ihre Beziehungen zur Entwicklung. I. Genaktivierung durch Ecdyson. Chromosoma 12, 607–675 (1961).PubMedCrossRefGoogle Scholar
  36. [36]
    Clever, U.: Von der Ecdysonkonzentration abhängige Genaktivitätsmuster in den Speicheldrüsenchromosomen von Chironomus tentans. Develop. Biol. 6, 73–98 (1963).PubMedCrossRefGoogle Scholar
  37. [37]
    Clever, U.: Actinomycin and puromycin: Effects on sequential gene activation by ecdysone. Science 146, 794–795 (1964).PubMedCrossRefGoogle Scholar
  38. [38]
    Clever, U.: The control of gene activity as factor of cell differentiation in insect development. In: Developmental and metabolic control mechanisms and Neoplasia, pp. 361–374 (1965). Published for the University of Texas by the Williams & Wilkins, Baltimore, Maryland.Google Scholar
  39. [39]
    Clever, U.: Puffing changes in incubated and in ecdysone treated Chironomus tentans salivary glands. Chromosoma 17, 309–322 (1965).PubMedCrossRefGoogle Scholar
  40. [40]
    Clever, U.: Chromosomal changes associated with differentiation. In: Genetic control of differentiation. Brookhaven Symp. Biol. 18, 242–253 (1965).Google Scholar
  41. [41]
    Clever, U.: Regulation of chromosome function. Ano. Rev. Genetics 2, 11–30 (1968).CrossRefGoogle Scholar
  42. [42]
    Clever, U.: and P. Karlson: Induktion von Puff-Veränderungen in den Speicheldrüsenchromosomen von Chironomus tentans durch Ecdyson. Exp. Cell Res. 20, 623–627 (1960).PubMedCrossRefGoogle Scholar
  43. [43]
    Congote, L. F., C. E. Sekeris, and P. Karlson: On the mechanism of hormone action. XYIII. Alteration of the nature of RNA synthesized in isolated fat body cell nuclei as a result of ecdysone and juvenile hormone action. Z. Naturforsch. 25 b, 279–284 (1970).Google Scholar
  44. [44]
    Collins, J. V.: The hormonal control of fat body development in Calpodes ethlius (Lepidoptera, Hesperidae). J. Insect Physiol. 15, 341–352 (1969).CrossRefGoogle Scholar
  45. [45]
    Crossley, A. C.: The fine structure and mechanism of breakdown of larval intersegmental muscles in the blowfly Calliphora erythrocephala. J. Insect Physiol. 14, 1389–1407 (1968).CrossRefGoogle Scholar
  46. [46]
    Crouse, H. Y.: The role of ecdysone in DNA-puff formation and DNA synthesis in the polytene chromosomes of Sciara coprophila. Proc. nat. Acad. Sci. (Amer.) 61, 971–978 (1968).CrossRefGoogle Scholar
  47. [47]
    Djerassi, C., J. C. Knight, and H. Brockmann: Nene Sterine aus dem Kaktus Wilcoxia viperina. Chem. Ber. 97, 3118–3130 (1964).CrossRefGoogle Scholar
  48. [48]
    Doyle, D., and H. Laufer: Analysis of secretory processes in Dipteran salivary glands. In vitro 3, 93–103 (1967).CrossRefGoogle Scholar
  49. [49]
    Dukes, P. P., C. E. Sekeris, and W. Schmid: On the mechanism of hormone action. II. “Increase in template activity of RNA from isolated nuclei incubated in presence of hormone”. Biochem. Biophys. Acta 123, 126–132 (1966).PubMedGoogle Scholar
  50. [50]
    Earle, N. W., I. Padovani, M. J. Thomson, and W. E. Robbins: Inhibition of larval development and egg production in the boll weevil following ingestion of ecdysone analogues. J. Econ. Entomol. 63, 1064–1069 (1970).Google Scholar
  51. [51]
    El-Ibrashy, M. T.: (see reference No. 80 on p. 285) (1972).Google Scholar
  52. [52]
    Emmerich, H.: Distribution of tritiated ecdysone in salivary gland cells of Drosophila. Nature 221, 954–955 (1969).PubMedCrossRefGoogle Scholar
  53. [53]
    Emmerich, H.: Anreicherung von tritiummarkierten Ecdyson in den Zellkernen der Speicheldrüsen von Drosophila hydei. Exp. Cell Res. 58, 261–270 (1969).PubMedCrossRefGoogle Scholar
  54. [54]
    Emmerich, H.: Ecdysonbindende Proteinfraktionen in den Speicheldrüsen von Drosophila hydei. Z. vergl. Physiol. 68, 385–402 (1970).CrossRefGoogle Scholar
  55. [55]
    Emmerich, H.: Über die Hämolymphproteine von Pyrrhocoris apterus und über die Bindung von Ecdyson durch Hämolymphproteine. J. Insect Physiol. 16, 725–747 (1970).CrossRefGoogle Scholar
  56. [56]
    Faux, A., M. N. Galbraith, D. H. S. Horn, E. J. Middleton, and J. A. Thomson: The structures of two ecdysone analogues, cheilanthones A and B from the fern Cheilanthes tenuifolia. Chem. Commun. 1970, 243–244.Google Scholar
  57. [57]
    Faux, A., D. H. S. Horn, E. J. Middleton, H. M. Fales, and M. E. Lowe: Moulting hormones of a crab during ecdysis. Chem. Commun. 1969, 175–176.Google Scholar
  58. [58]
    Feir, D., and G. Winkler: Ecdysone titres in the last larva and adult stage of the milkweed bug. J. Insect Physiol. 15, 899–904 (1969).CrossRefGoogle Scholar
  59. [59]
    Fourche, J.: Action de l’ecdysone sur les larves de Drosophila melanogaster soumises au jeune. Existence d’un double conditionement pour la formation du puparium. C. R. Acad. Sci. (Paris) 264, 2398–2400 (1967).Google Scholar
  60. [60]
    Fourche, J.: Le déterminisme des mues et des métamorphoses chez Drosophila melanogaster: Influence du jeune et de la fourniture d’ecdysone. Arch. Anat. Micr. 56, 141–152 (1967).Google Scholar
  61. [61]
    Fourche, J.: Le déterminisme de la formation du puparium chez Drosophila melanogaster: Étude de la compétence a la fourniture d’ecdysone chez des larves soumises au jeune. Arch. Anat. Micr. 58, 239–248 (1969).Google Scholar
  62. [62]
    Fraenkel, G.: Pupation of flies initiated by a hormone. Nature 133, 834 (1934).CrossRefGoogle Scholar
  63. [63]
    Fraenkel, G.: A hormone causing pupation in the blowfly Calliphora erythrocephala. Proc. Roy. Soc. (London) B 118, 1–12 (1935).Google Scholar
  64. [64]
    Fraenkel, G., and C. Hsiao: Calcification, tanning and the role of ecdysone in the formation of the puparium of the facefly, Musca autumnalis. J. Insect Physiol. 13, 1387–1394 (1967).CrossRefGoogle Scholar
  65. [65]
    Fraenkel, G., and C. Hsiao: Morphological and endocrinological aspects of pupal diapause in a fleshfly, Sarcophaga argyrostoma. J. Insect Physiol. 14, 707–718 (1968).CrossRefGoogle Scholar
  66. [66]
    Fraenkel, G., and J. Žďárek: The evaluation of the “Calliphora test” as an assay for ecdysone. Biol. Bull. Woods Hole 139, 138–150 (1970).CrossRefGoogle Scholar
  67. [67]
    Fraenkel, G., and E. Zlotkin: Acceleration of puparium formation in Sarcophaga argyrostoma by electrical stimulation or scorpion venom. J. Insect Physiol. 16, 1549–1554 (1970).PubMedCrossRefGoogle Scholar
  68. [68]
    Fukuda, S.: Induction of pupation in silkworm by transplanting the prothoracic gland. Proc. Imp. Acad. Japan 16, 417–420 (1940).Google Scholar
  69. [69]
    Fukuda, S.: Induction of metamorphosis in the silkworm by transplanting the prothoracic gland. Zool. Mag., Tokyo 53, 12 (1941).Google Scholar
  70. [70]
    Fukuda, S.: Role of the prothoracic gland in differentiation of the imaginal character in the silkworm pupa. Annot. Zool. Jap. 20, 9–13 (1941).Google Scholar
  71. [71]
    Furlenmeier, A., A. Fürst, A. Langemann, G. Waldvogel, P. Hocks, U. Kerb, and R. Wiechert: The synthesis of ecdysone. Experientia 22, 573 (1966).PubMedCrossRefGoogle Scholar
  72. [72]
    Furlenmeier, A., A. Fürst, A. Langemann, G. Waldvogel, P. Hocks, U. Kerb, and R. Wiechert: Zur Synthese des Ecdysons. Helv. 50, 2387–396 (1967).CrossRefGoogle Scholar
  73. [73]
    Furlenmeier, A., A. Fürst, A. Langemann, G. Waldvogel, U. Kerb, P. Hocks, and R. Wiechert: Zur Synthese des Ecdysons. Synthesen von 2β,3β,14α-Trihydroxy-6-keto-Δ7-A/B-cis-Steroiden. Helv. 49, 1591–1601 (1966).CrossRefGoogle Scholar
  74. [74]
    Galbraith, M. N., and D. H. S. Horn: An insect-moulting hormone from a plant. Chem. Commun. 1966, 905–906.Google Scholar
  75. [75]
    Galbraith, M. N., D. H. S. Horn, E. J. Middleton, and R. J. Hackney: Structure of deoxycrustecdysone, a second erustacean moulting hormone. Chem. Commun. 1968, 83–85.Google Scholar
  76. [76]
    Galbraith, M. N., D. H. S. Horn, E. J. Middleton, and R. J. Hackney: The structure of podecdysone B, a new phytoecdysone. Chem. Commun. 1969, 402–403.Google Scholar
  77. [77]
    Galbraith, M. N., D. H. S. Horn, E. J. Middleton, and R. J. Hackney: Moulting hormones of insects and crustaceans: The synthesis of 22- deoxycrustecdysone. Austr. J. Chem. 22, 1517–1524 (1969).CrossRefGoogle Scholar
  78. [78]
    Galbraith, M. N., D. H. S. Horn, E. J. Middleton, J. A. Thomson, J. B. Siddall, and W. Hafferl: The catabolism of crustecdysone in the blowfly Calliphora stygia. Chem. Commun. 1969, 1134–1135.Google Scholar
  79. [79]
    Galbraith, M. N., D. H. S. Horn, E. J. Middleton, and J. A. Thomson: The biosynthesis of crustecdysone in the blowfly Calliphora stygia. Chem. Commun. 1970, 179–180.Google Scholar
  80. [80]
    Galbraith, M. N., D. H. S. Horn, Q. N. Porter, and R. J. Hackney: Structure of podecdysone A, a steroid with moulting hormone activity from the bark of Podocarpus elatus. Chem. Commun. 1968, 971–972.Google Scholar
  81. [81]
    Galbraith, M. N., D. H. S. Horn, J. A. Thomson, G. J. Neufeld, and R. J. Hackney: Insect moulting hormones: Crustecdysone in Calliphora. J. Insect. Physiol. 15, 1225–1233 (1966).CrossRefGoogle Scholar
  82. [82]
    Gersch, M., and J. Stürzebecher: Über eine Synthese von Ecdyson-3H und Ecdysteron-3H aus Cholesterin-3H geschnürten Abdomina von Mamestra brassicae-Raupen. Experientia 27, 1475–1476 (1971).CrossRefGoogle Scholar
  83. [83]
    Gilbert, L. I., S. Applebaum, T. A. Gorell, J. B. Siddall, and Y. C. Siew: Aspects of research on insect growth hormones. Bull. World Health Org. 44, 397–398 (1971).PubMedGoogle Scholar
  84. [84]
    Gorell, T. A., and L. I. Gilbert: Stimulation of protein and RNA synthesis in the crayfish hepatopancreas by crustecdysone. Gen. Comp. Endocrinol. 13, 308–310 (1969).PubMedCrossRefGoogle Scholar
  85. [85]
    Hampshire, F., and D. H. S. Horn: Structure of crustecdysone, a crustacean moulting hormone. Chem. Commun. 1966, 37–38.Google Scholar
  86. [86]
    Hanser, G., and P. Karlson: Über die Wirkung des Metamorphosehormons auf die Epidermis von Ephestia-Dauerraupen. Biol. Zbl. 76, 129–141 (1957).Google Scholar
  87. [87]
    Harrison, I. T., J. B. Siddall, and J. H. Fried: Synthetic studies on insect hormones. III. An alternativo synthesis of ecdysone and 22-isoecdysone. Tetrahedron Letters 1966, 3457–3460.Google Scholar
  88. [88]
    Heinrich, G., and H. Hoffmeister: Ecdyson als Begleitsubstanz des Ecdysterons in Polypodium vulgare L. Experientia 23, 995 (1967).CrossRefGoogle Scholar
  89. [89]
    Heinrich, G., and H. Hoffmeister: 5β-Hydroxyecdysteron, ein Pflanzensteroid mit Häutungshormonaktivität aus Polypodium vulgare L. Tetrahedron Letters 1968, 6063–6064.Google Scholar
  90. [90]
    Heinrich, G., and H. Hoffmeister: Bildung von Hormonglykosiden als Inaktivierungsmechanismus bei Calliphora erythrocephala. Z. Naturforseh. B 25 b, 358–359 (1970).Google Scholar
  91. [91]
    Hikino, H., Y. Hikino, K. Nomoto, and T. Takemoto: Cyasterone, an Insect metamorphosing substance from Cyathula capitata: Structure. Tetrahedron 24, 4895–4906 (1968).CrossRefGoogle Scholar
  92. [92]
    Hikino, H., Y. Hikino, and T. Takemoto: Synthesis of rubrosterone, a metabolite of insect moulting substances from Achyranthes rubrofusca. Tetrahderon Letters 1968, 4255–4256.Google Scholar
  93. [93]
    Hikino, H., Y. Hikino, and T. Takemoto: Rubrosterone, a metabolite of insect metamorphosing substance from Achyranthes rubrofusca: Synthesis. Tetrahedron 25, 3389–3394 (1969).CrossRefGoogle Scholar
  94. [94]
    Hikino, H., K. Nomoto, B. Ino, and T. Takemoto: Structure of precyasterone, a novel C29 insect-moulting substance from Cyathula capitata. Chem. Pharm. Bull. 18, 1078–1080 (1970).CrossRefGoogle Scholar
  95. [95]
    Hikino, H., K. Nomoto, and T. Takemoto: Structure of sengosterone, a novel C29 insect-moulting substance from Cyathula capitata. Tetrahedron Letters 1969, 1417–1420.Google Scholar
  96. [96]
    Hikino, H., K. Nomoto, and T. Takemoto: Poststerone, a metabolite of insect metamorphosing substances from Cyathula capitata. Steroids 16, 393–400 (1970).PubMedCrossRefGoogle Scholar
  97. [97]
    Hikino, H., Y. Ohizumi, and T. Takemoto: Catabolism of ponasterone A to ecdysterone, inokosterone, and poststerone in Bombyx mori. Chem. Commun. 1971, 1036–1037.Google Scholar
  98. [98]
    Hikino, H., and T. Takemoto: Arthropod moulting hormones from plants Achyranthes and Cyathula. Naturwissenschaften 59, 91–98 (1972).PubMedCrossRefGoogle Scholar
  99. [99]
    Hirono, I., I. Sasaoka, and M. Schimizu: Effect of insect moulting hormones, ecdysterone and inokosterone, on tumor cells. GANN 60, 341–342 (1969).PubMedGoogle Scholar
  100. [100]
    Hocks, P., A. Jäger, U. Kerb, R. Wiechert, A. Furlenmeier, A. Fürst, and A. Langemann: Synthetische Steroide mit Häutungshormonaktivität. Angew. Chem. 78, 680–681 (1966).CrossRefGoogle Scholar
  101. [101]
    Hocks, P., U. Kerb, R. Wiechert, A. Furlenmeier, and A. Fürst: Die Synthese des Bubrosterons. Tetrahedron Letters 1968, 4281–4284.Google Scholar
  102. [102]
    Hocks, P., and R. Wiechert: 20-Hydroxyecdyson, isoliert aus Insekten. Tetrahedron Letters 1966, 2989–2993.Google Scholar
  103. [103]
    Hoffmeister, H., K. Nakanishi, M. Koreeda, and H. Y. Hsu: The moulting hormone activity of ponasterones in the Calliphora test. J. Insect Physiol. 14, 53–54 (1968).CrossRefGoogle Scholar
  104. [104]
    Hoffmeister, H., C. Rufer, and H. Ammon: Ausscheidnng von Ecdyson bei Insekten. Z. Naturforsch. 20 b, 130–133 (1965).Google Scholar
  105. [105]
    Hoffmeister, H., C. Rufer, H. H. Keller, H. Schairer, and P. Karlson: Zur Chemie des Ecdysons. III. Yergleichende spektrometrische Untersuchungen an α, β-ungesättigten Steroidketonen. Chem. Ber. 98, 2361–2375 (1965).CrossRefGoogle Scholar
  106. [106]
    Hoppe, W., and R. Huber: Zur Chemie des Ecdysons. II. Bestimmung des Sterin-Skeletts und seiner Orientierung mit diffuser Röntgenstreuung in Kristallen von Ecdyson. Chem. Ber. 98, 2353–2360 (1965).PubMedCrossRefGoogle Scholar
  107. [107]
    Hora, J., L. Lábler, A. Kasal, Y. Černý, F. Šorm, and K. Sláma: Moulting deficiencies produced by some sterol derivatives in an insect (Pyrrhocoris apterus L.). Steroids 8, 887–914 (1966).PubMedCrossRefGoogle Scholar
  108. [108]
    Horn, D. H. S., S. Fabbri, F. Hampshire, and M. E. Lowe: Isolation of crustecdysone (20 R-hydroxyecdysone) from a crayfish (Jasus lalandei, H. Milne Edwards). Biochem. J. 109, 399–406 (1968).PubMedGoogle Scholar
  109. [109]
    Horn, D. H. S., E. J. Middleton, J. A. Wunderlich, and F. Hampshire: Identity of moulting hormones of insects and crustaceans. Chem. Commun. 1966, 339–341.Google Scholar
  110. [110]
    Hsiao, C., and T. H. Hsiao: (see reference No. 127 on p. 288).PubMedCrossRefGoogle Scholar
  111. [111]
    Huber, R., and W. Hoppe: Zur Chemie des Ecdysons. VII. Die Kristall- und Molekülstrukturanalyse des Insektenverpuppungshormons Ecdyson mit der automatisierten Faltmolekülmethode. Chem. Ber. 98, 2403–2424 (1965).PubMedCrossRefGoogle Scholar
  112. [112]
    Huet, C., Différenciation en culture in vitro des ébauches présomptives de l’appareil génital femelle de Tenebrio molitor L. en présence d’ecdysone. C. R. Hebd. Séanc. Acad. Sci. (Paris) 272, 1896–1899 (1971).Google Scholar
  113. [113]
    Hüppi, G., and J. B. Siddall: Synthetic studies on insect hormones. V. The synthesis of crustecdysone (20-hydroxyecdysone). J. Amer. chem. Soc. 89, 6790–6792 (1967).CrossRefGoogle Scholar
  114. [114]
    Hüppi, G., and J. B. Siddall: Synthetic studies on insect hormones. VI. The synthesis of ponasterone A and its stereochemical identity with crustecdysone. Tetrahedron Letters 1968, 1113–1114.Google Scholar
  115. [115]
    Imai, S., S. Fujioka, E. Murata, K. Otsuka, and K. Nakanishi: Structure of phytoecdysone, ajugasterone B. Chem. Commun. 1969, 82–83.Google Scholar
  116. [116]
    Imai, S., S. Fujioka, E. Murata, Y. Sasakawa, and K. Nakanishi: The structures of three additional phytoecdysones from Podocarpus macrophyllus, makisterone B, C, and D. Tetrahedron Letters 1968, 3887–3890.Google Scholar
  117. [117]
    Imai, S., S. Fujioka, K. Nakanishi, M. Koreeda, and T. Kurokawa: Extraction of ponasterone A and ecdysterone from Podocarpaceae and related plants. Stereoids 10, 557–565 (1967).CrossRefGoogle Scholar
  118. [118]
    Imai, S., M. Hori, S. Fujioka, E. Murata, M. Goto, and K. Nakanishi: Isolation of four new phytoecdysones, makisterone A, B, C, D, and the structure of makisterone A, a C28 steroid. Tetrahedron Letters 1968, 3883–3886.Google Scholar
  119. [119]
    Imai, S., E. Murata, S. Fujioka, M. Koreeda, and K. Nakanishi: structure of ajugasterone C, a phytoecdysone with an 11-hydroxy-group. Chem. Commun. 1969, 546–547.Google Scholar
  120. [120]
    Imai, S., E. Murata, S. Fujioka, T. Matstuoka, M. Koreeda, and K. Nakanishi: Structures of stachysterones C and D. Chem. Commun. 1970, 352–353.Google Scholar
  121. [121]
    Imai, S., T. Toyosato, M. Sakat, Y. Sato, S. Fujioka, E. Murata, and M. Goto: Screening results of plants for phytoecdysones. Chem. Pharm. Bull. 17, 335–339 (1969).PubMedCrossRefGoogle Scholar
  122. [122]
    Imai, S., T. Toyosato, M. Sakai, Y. Sato, S. Fujioka, E. Murata, and M. Goto: Isolation of cyasterone and ecdysterone from plant materials. Chem. Pharm. Bull. 17, 340–342 (1969).CrossRefGoogle Scholar
  123. [123]
    Ito, S., and W. B. Loevenstein: Permeability of a nuclear membrane: Changes during normal development and changes induced by growth hormone. Science 150, 909–910 (1965).CrossRefGoogle Scholar
  124. [124]
    Jacobs, W. P., and H. B. Suthers: The culture of apical buds of Xanthium and their use as a bioassay for flowering activity of ecdysterone. Amer. J. Bot. 58, 836–843 (1971).CrossRefGoogle Scholar
  125. [125]
    Jenkin, P. M.: Apolysis and hormones in the moulting cycle of arthropods. Ann. Endocrin. (Paris) 27, 331–341 (1966).Google Scholar
  126. [126]
    Jenkin, P. M., and H. E. Hinton: Apolysis in arthropod moulting cycles. Nature 211, 871 (1966).PubMedCrossRefGoogle Scholar
  127. [127]
    Jizba, J., L. Dolejš, Y. Herout, F. Šorm, H. W. Fehlhaber, G. Snatzke, B. Tschesche, and F. Wulff: Polypodosaponin, ein neuer Saponintyp aus Polypodium vulgare L. Chem. Ber. 104, 837–846 (1971).CrossRefGoogle Scholar
  128. [128]
    Jizba, J., L. Dolejš, Y. Herout, and F. Šorm: The structure of osladin—the sweet principie of the rhizomes of Polypodium vulgare L. Tetrahedron Letters 1971, 1329–1332.Google Scholar
  129. [129]
    Jizba, J., and Y. Herout: Isolation of constituents of common polypody rhizomes (Polypodium vulgare L.). Coll. Czech. Chem. Comm. 32, 2867–2874 (1967).Google Scholar
  130. [130]
    Jizba, J., Y. Herout, and F. Šorm: Isolation of ecdysterone (erustecdysone) from Polypodium vulgare rhizomes. Tetrahedron Letters 1967, 1689–1691.Google Scholar
  131. [131]
    Jizba, J., Y. Herout, and F. Šorm: Polypodine B- a novel ecdysonlike substanee from plant material. Tetrahedron Letters 1967, 5139–5143.Google Scholar
  132. [132]
    Joly, B. A., C. M. Svahn, B. D. Bennett, and E. Heftmann: Investigation of intermediate steps in the biosynthesis of ecdysterone from cholesterol in Podocarpus elata. Phytochemistry 8, 1917–1920 (1969).CrossRefGoogle Scholar
  133. [133]
    Judy, K. J.: Cellular response to ecdysterone in vitro. Science 165, 1374–1375 (1969).PubMedCrossRefGoogle Scholar
  134. [134]
    Judy, K. J., and L. I. Gilbert: 1970 (see reference No. 155 on p. 289).PubMedCrossRefGoogle Scholar
  135. [135]
    Judy, K. J., and E. P. Marks: Effects of ecdysterone in vitro on hindgut and hemocytes of Manduca sexta (Lepidoptera). Gen. Comp. Endocrinol. 17, 351–359 (1971).CrossRefGoogle Scholar
  136. [136]
    Kambysellis, M. P., and C. M. Williams: In vitro development of insect tissues. II. The role of ecdysone in the spermatogenesis of silk-worms. Biol. Bull. Woods Hole 141, 541–552 (1971).CrossRefGoogle Scholar
  137. [137]
    Kambysellis, M. P., and C. M. Williams: Spermatogenesis in cultured testes of the Cynthia silkworm: Effects of ecdysone and of prothoraeic glands. Science 175, 769–770 (1972).PubMedCrossRefGoogle Scholar
  138. [138]
    Kaplanis, J. N., W. E. Robbins, M. J. Thompson, and A. H. Baumhover: Ecdysone analogue: Conversion to alpha ecdysone and 20-hydroxyecdysone by an insect. Science 166, 1540–1541 (1969).PubMedCrossRefGoogle Scholar
  139. [139]
    Kaplanis, J. N., L. A. Tabor, M. I. Thompson, W. E. Robbins, and T. I. Shortino: Assay for ecdysone (moulting hormone) activity using the house fly, Musca domestica L. Steroids 8, 625–631 (1966).CrossRefGoogle Scholar
  140. [140]
    Kaplanis, J. N., M. J. Thompson, W. E. Robbins, and B. M. Bryce: Insect hormones: Alpha ecdysone and 20-hydroxyecdysone in bracken fern. Science 157, 1436–1438 (1967).PubMedCrossRefGoogle Scholar
  141. [141]
    Kaplanis, J. N., M. J. Thompson, R. T. Yamamoto, W. E. Robbins, and S. J. Louloudes: Ecdysones from the pupa of the tobacco horn-worm Manduca sexta (Johannson). Steroids 8, 605–623 (1966).PubMedCrossRefGoogle Scholar
  142. [142]
    Karlson, P.: Biochemieal studies on insect hormones. Vitam. Horm. 14, 227–266 (1956).PubMedCrossRefGoogle Scholar
  143. [143]
    Karlson, P.: Zum Tyrosinstoffweehsel der Insekten. III. Über den Einbau von Tyrosin-Umwandlungsprodukten in das Puppentönnchen. Z. Physiol. Chem. 318, 194–200 (1960).CrossRefGoogle Scholar
  144. [144]
    Karlson, P.: Morphogenese und Metamorphose der Insekten. 14. Co11. Ges. Phys. Chem., Mosbach/Baden, pp. 101–126 (1962).Google Scholar
  145. [145]
    Karlson, P.: Mechanism of hormone action. A Nato Advanced Study Institute 139–148. Meersling/Bodensee, 20–26. Mai 1964. Stuttgart: G. Thieme. 1965.Google Scholar
  146. [146]
    Karlson, P.: Biochemistry and mode of action of ecdysone. In: Excerpta Media International Congress Series No. 83, 516–519 (1964).Google Scholar
  147. [147]
    Karlson, P.: Ecdyson, das Häutungshormon der Insekten. Natur-wissensehaften 53, 445–453 (1966).CrossRefGoogle Scholar
  148. [148]
    Karlson, P., and C. E. Sekeris: Ecdysone, an insect steroid hormone, and its mode of action. Rec. Progr. Horm. Res. 22, 473–502 (1966).PubMedGoogle Scholar
  149. [149]
    Karlson, P.: The chemistry of insect hormones and insect pheromones. Pure and Appl. Chem. 14, 75–87 (1967).CrossRefGoogle Scholar
  150. [150]
    Karlson, P., and C. Bode: Die Inaktivierung des Ecdysons bei der Schmeißfliege Calliphora erythrocephala Meigen. J. Insect Physiol. 15, 111–118 (1969).CrossRefGoogle Scholar
  151. [151]
    Karlson, P., L. F. Congote, and C. E. Sekeris: (see reference No. 159 on p. 289).Google Scholar
  152. [152]
    Karlson, P., and H. Hoffmeister: Zur Biogenese des Ecdysons. I. Umwandlung von Cholesterin in Ecdyson. Z. Physiol. Chem. 331, 298–300 (1963).CrossRefGoogle Scholar
  153. [153]
    Karlson, P., H. Hoffmeister, W. Hoppe, and R. Huber: Zur Chemie des Ecdysons. Ann. Chem. 662, 1–20 (1963).Google Scholar
  154. [154]
    Karlson, P., H. Hoffmeister, H. Hummel, P. Hocks, and G. Spiteller: Zur Chemie des Ecdysons. VI. Reaktionen des Ecdysonmoleküls. Chem. Ber. 98, 2394–2402 (1965).PubMedCrossRefGoogle Scholar
  155. [155]
    Karlson, P., and H. Liebau: Zum Tyrosinstoffwechsel der Insekten. V. Reindarstellung, Kristallisation und Substratspezifität der o-Diphenoloxidase aus Calliphora erythrocephala. Z. Physiol. Chem. 326, 135–143 (1961).CrossRefGoogle Scholar
  156. [156]
    Karlson, P., D. Meyenhagen, and C. E. Sekeris: Zum Tyrosinstoffwechsel in Insekten. XV. Weitere Untersuchungen über das o-Diphenyloxidase-System von Calliphora erythrocephala. Z. Physiol. Chem. 338, 42–50 (1964).CrossRefGoogle Scholar
  157. [157]
    Karlson, P., and G. Peters: Zum Wirkungsmechanismus der Hormone. Der Einfluß des Ecdysons auf den Nueleinsauerstoffwechsel von Calliphora-Larven. Gen. Comp. Endocrinol. 5, 252–259 (1965).CrossRefGoogle Scholar
  158. [158]
    Karlson, P., and E. Shaaya: Der Ecdysontiter während der Insek-tenentwicklung. I. Eine Methode zur Bestimmung des Ecdysongehalts. J. Insect Physiol. 10, 797–804 (1964).CrossRefGoogle Scholar
  159. [159]
    Karlson, P., and H. Schmied: Über die Tyrosinase der Calliphora-Larven. Z. Physiol. Chem. 300, 35–41 (1955).CrossRefGoogle Scholar
  160. [160]
    Karlson, P., and C. E. Sekeris: N-Acetyl-dopamine as sclerotizing agent in the insect cuticle. Nature 195, 183–184 (1962).CrossRefGoogle Scholar
  161. [161]
    Karlson, P., and C. E. Sekeris: Ecdysone, an insect steroid hormone, and its mode of action. In: Recent progress in hormone research, Vol. 22, pp. 473–502 (1966). New York: Academic Press.Google Scholar
  162. [162]
    Karlson, P., C. E. Sekeris, and R. Maurer: Zum Wirkungsmechanismus der Hormone. I. Verteilung von Tritium-markiertem Ecdyson in Larven von Calliphora erythrocephala. Z. Physiol. Chem. 336, 100–106 (1964).CrossRefGoogle Scholar
  163. [163]
    Kerb, U., P. Hocks, R. Wiechert, A. Furlenmeier, A. Fürst, A. Langemann, and G. Waldvogel: Die Synthese des Ecdysons. Tetrahedron Letters 1966, 1387–1391.Google Scholar
  164. [164]
    Kerb, U., G. Schulz, P. Hocks, R. Wiechert, A. Furlenmeier, A. Fürst, A. Langimann, and G. Waldvogel: Zur Synthese des Ecdysons. Die Synthese des natürliehen Häutungshormons. Helv. 49, 1601–1606 (1966).CrossRefGoogle Scholar
  165. [165]
    Kerb, U., R. Wiechert, A. Furlenmeier, and A. Fürst: Über eine Synthese des Crustecdysons (20-Hydroxyecdysons). Tetrahedron Letters 1968, 4277–4280.Google Scholar
  166. [166]
    King, D. S., and J. B. Siddall: Conversion of α-ecdysone to β-ecdysone by crustaeeans and insects. Nature 221, 955–956 (1969).PubMedCrossRefGoogle Scholar
  167. [167]
    Knight, J. C., and G. B. Pettit: Arizona flora: The sterols of Peniocereus greggii. Phytochemistry 8, 477–482 (1969).CrossRefGoogle Scholar
  168. [168]
    Kok, L. T., D. M. Norris, and H. M. Chu: Sterol metabolism as a basis for a mutualistic symbiosis. Nature 225, 661–662 (1970).PubMedCrossRefGoogle Scholar
  169. [169]
    Kobayashi, M., and H. Akai: Action of ecdysone on some metabolism during larval-pupal transformation of the housefly, Musca domestica L. (Diptera: Muscidae). Appl. Ent. Zool. 2, 223–224 (1967).Google Scholar
  170. [170]
    Kobayashi, M., and S.Kimura: Action of ecdysone on the conversion of 14C-glucose in dauer pupa of the silkworm, Bombyx mori. J. Insect Physiol. 13, 545–552 (1967).CrossRefGoogle Scholar
  171. [171]
    Kobayashi, M., T. Takemoto, S. Ogawa, and N. Nishimoto: The moulting hormone activity of ecdysterone and inokosterone isolated from Achyranthis radix. J. Insect. Physiol. 13, 1395–1399 (1967).CrossRefGoogle Scholar
  172. [172]
    Kopeć, S.: Experiments on metamorphosis of insects. Bull. Int. Acad. Sci. (Cracovie) B 1917, 57–60.Google Scholar
  173. [173]
    Kopec, S.: Studies on the necessity of the brain for the inception of insect metamorphosis. Biol. Bull. Woods Hole 42, 323–342 (1922).CrossRefGoogle Scholar
  174. [174]
    Koreeda, M., and K. Nakanishi: 5 β-Hydroxy-ecdysones and revision of the structure of ponasterone C. Chem. Commun. 1970, 351–352.Google Scholar
  175. [175]
    Koreeda, M., K. Nakanishi, and M. Goto: Ajugalactone, an insect moulting inhibitor as tested by the Chilo dipping method. J. Amer. chem. Soc. 92, 7512–7513 (1970).CrossRefGoogle Scholar
  176. [176]
    Krishnakltmaran, A., S. J. Berry, H. Oberlander, and H. A. Schneiderman: Nucleic acid synthesis during insect development. II. Control of DNA synthesis in the Cecropia silkworm and other Saturniid moths. J. Insect Physiol. 13, 1–57 (1967).CrossRefGoogle Scholar
  177. [177]
    Krishnakumaran, A., H. Oberlander, and H. A. Schneiderman: (see reference No. 175 on p. 77) (1963).Google Scholar
  178. [178]
    Krishnakumaran, A., and H. A. Schneiderman: Chemical control of moulting in Arthropods. Nature 220, 601–603 (1968).PubMedCrossRefGoogle Scholar
  179. [179]
    Krishnakumaran, A., and H. A. Schneiderman: Induction of moulting in Crustacea by an insect moulting hormone. Gen. Comp. Endocrinol. 12, 515–518 (1969).PubMedCrossRefGoogle Scholar
  180. [180]
    Krishnakumaran, A., and H. A. Schneiderman: Control of moulting in mandibulate and chelicerate Arthropods by ecdysones. Biol. Bull. Wood’s Hole 139, 520–538 (1970).CrossRefGoogle Scholar
  181. [181]
    Kroeger, H.: Chemical nature of the system controlling gene activities in insect cells. Nature 200, 1234–1235 (1963).PubMedCrossRefGoogle Scholar
  182. [182]
    Kroeger, H.: The mechanism of gene activation in Dipteran salivary gland chromosomes. Arch. Anat. Micr. 54, 643–645 (1965).Google Scholar
  183. [183]
    Kroeger, H.: Potentialdifferenz und Puffmuster. Elektrophysiologische und eytologische Untersuchungen an den Speieheldrüsen von Chironomus tentans. Exp. Cell Res. 41, 64–80 (1966).PubMedCrossRefGoogle Scholar
  184. [184]
    Kroeger, H.: Gene activities during insect metamorphosis and their control by hormones. In: Metamorphosis: a problem in developmental biology, pp. 185–219. Published by Appleton-Century-Crofts, New York, Educational Division, Meredith Corporation. 1966.Google Scholar
  185. [185]
    Kroeger, H., and M. Lezzi: Regulation of gene action in insect development. Ann. Rev. Entomol. 11, 1–22 (1966).CrossRefGoogle Scholar
  186. [186]
    Laufer, H.: Developmental interactions in the Dipteran salivary gland. Amer. Zoologist 8, 257–271 (1968).Google Scholar
  187. [187]
    Laufer, H., B. Rao, and Y. Nakase: Developmental studies of the Dipteran salivary gland. IV. Changes in DNA content. J. Exp. Zool. 166, 71–76 (1967).PubMedCrossRefGoogle Scholar
  188. [188]
    Laverdure, A. M.: L’évolution de l’ovaire chez la nymphe et l’adulte de Tenebrio molitor (Coléoptére). La vitellogenèse. Bull. Soc. Zool. (France) 95, 753–764 (1970).Google Scholar
  189. [189]
    Leenders, H. J., G. J. Wullems, and H. D. Berendes: Competitive interaction of adenosine 3’, 5’ -monophosphate on gene activation by ecdysterone. Exp. Cell. Res. 63, 159–164 (1970).PubMedCrossRefGoogle Scholar
  190. [190]
    Lezzi, M.: Induktion eines Ecdyson-aktivierbaren Puff in isolierten Zellkernen von Chironomus durch KCl. Exp. Cell. Res. 43, 571–547 (1966).PubMedCrossRefGoogle Scholar
  191. [191]
    Lezzi, M., and M. Frigg: (see reference No. 178 on p. 290).Google Scholar
  192. [192]
    Lezzi, M., and L. I. Gilbert: (see reference No. 179 on p. 290).CrossRefGoogle Scholar
  193. [193]
    Lezzi, M., and L. I. Gilbert: Differential effects of K+ and Na+ on specific bands of isolated polytene chromosomes of Chironomus tentans. J. Cell. Sci. 6, 615–628 (1970).PubMedGoogle Scholar
  194. [194]
    Lockshin, R. A.: Programmed cell death. Activation of lysis by a mechanism involving the synthesis of protein. J. Insect Physiol. 15, 1505–1516 (1969).PubMedCrossRefGoogle Scholar
  195. [195]
    Lockshin, R. A., and C. M. Williams: Programmed cell death. II. Endocrine potentiation of the breakdown of the intersegmental muscles of silkmoths. J. Insect Physiol. 10, 643–649 (1964).CrossRefGoogle Scholar
  196. [196]
    Lowe, M. E., D. H. S. Horn, and M. N. Galbraith: The role of crustecdysone in the moulting crayfish. Experientia 24, 518–519 (1968).PubMedCrossRefGoogle Scholar
  197. [197]
    Lucas, K. U., and G. R. Wyatt: DNA-RNA hybridization studies on ecdysone-induced wing development in the Cecropia silkmoth. J. Insect Physiol. 17, 2301–2316 (1971).PubMedCrossRefGoogle Scholar
  198. [198]
    Lupien, P. J., C. Hinse, and K. D. Chaudhary: Ecdysone as a hypo-cholesterolemic argent. Archs. Int. Physiol. Biochim. 77, 206–212 (1969).CrossRefGoogle Scholar
  199. [199]
    Madhavan, K., and H. A. Schneiderman: Effects of ecdysone on epidermal cells in which DNA synthesis has been blocked. J. Insect Physiol. 14, 777–781 (1968).CrossRefGoogle Scholar
  200. [200]
    Madhavan, K., and H. A. Schneiderman: Hormonal control of imaginal dise regeneration in Galleria mellonella (Lepidoptera). Biol. Bull. Woods Hole 137, 321–331 (1969).CrossRefGoogle Scholar
  201. [201]
    Maissiat, J.: Un ecdysis expérimentale provoqué chez l’Oniscoide Ligia oceanica L. et rétablissement de la mue par injection d’ecdysone ou réimplantation de glande maxillaire. C. B. Séanc. Biol. 164, 1608–1609 (1970).Google Scholar
  202. [202]
    Mandaron, P.: Développement in vitro des disques imaginaux de la Drosophile. Aspeets morphologiques et histologiques. Develop. Biol. 22, 298–320 (1970).PubMedCrossRefGoogle Scholar
  203. [203]
    Marks, E. P.: The action of hormones in insect cell and organ cultures. Gen. Comp. Endocrinol. 15, 289–302 (1970).PubMedCrossRefGoogle Scholar
  204. [204]
    Marks, E. P.: Effects of ecdysterone on the deposition of cockroach cuticle in vitro. Biol. Bull. Woods Hole 142, 293–301 (1972).CrossRefGoogle Scholar
  205. [205]
    Marks, E. P., P. I. Ittycheriah, and A. M. Leloup: The effeets of α-ecdysone on insect neurosecretion in vitro. J. Insect Physiol. 18, 847–850 (1972).CrossRefGoogle Scholar
  206. [206]
    Marks, E. P., and R. A. Leopold: Deposition of cuticular substances in vitro by leg regenerates from the cockroach, Lencophaea maderae (F.). Biol. Bull. Woods Hole 140, 73–83 (1971).CrossRefGoogle Scholar
  207. [207]
    Masuoka, M., S. Prita, A. Shino, T. Matsuzawa, and B. Nakayama: Pharmacological studies of insect metamorphosing hormone: Pona-sterone A, ecdysterone, and inokosterone in the rat. Jap. J. Pharmacol. 20, 142–156 (1970).PubMedCrossRefGoogle Scholar
  208. [208]
    Mayor, P. A., and G. D. Meakins: Steroids of unnatural eonfiguration. IV. Oxidation of lumisterol and lumisterol acetate with perbenzoic acid. J. Chem. Soc. 1960, 2792–2800.Google Scholar
  209. [209]
    Monroe, R. E., T. L. Hopkins, and S. A. Valder: Metabolism and utilization of cholesterol-4-C14 for growth and reproduetion of aseptically reared houseflies (Musca domestica). J. Insect Physiol. 13, 219–233 (1967).PubMedCrossRefGoogle Scholar
  210. [210]
    Morohoshi, S., and T. Iijima: Induction of supernumerous ecdysis by the injection of ecdysones in Bombyx mori. Proc. Japan Acad. 45, 314–318 (1969).Google Scholar
  211. [211]
    Mori, H., and K. Shibata: Synthesis of ecdysterone. Chem. Pharm. Bull. 17, 1970–1973 (1969).PubMedCrossRefGoogle Scholar
  212. [212]
    Mori, H., K. Shibata, K. Tsuneda, and M. Sawai: Synthesis of ecdysone. Chem. Pharm. Bull. 16, 563–566 (1968).CrossRefGoogle Scholar
  213. [213]
    Mori, H., K. Shibata, K. Tsuneda, and M. Sawai: Synthesis of ecdysone. IV. A novel synthesis of the side ehain structure of ecdysone. Chem. Pharm. Bull. 17, 690–698 (1969).CrossRefGoogle Scholar
  214. [214]
    Muftig, M.: Metamorphosis of miracidia into cercaria of Schistosoma mansoni. Parasitology 59, 365–371 (1969).CrossRefGoogle Scholar
  215. [215]
    Nakanishi, K.: Ponasterones, compounds with moulting hormone activity. Bull. Soc. Chim. Fr. 1969, 3475–3485.Google Scholar
  216. [216]
    Nakanishi, K.: The ecdysones. Pure and Appl. Chem. 25, 167–195 (1971).Google Scholar
  217. [217]
    Nakanishi, K., M. Koreeda, M. L. Chang, H. Y. Hsu: Insect hormones. V. The structures of ponasterones B and C. Tetrahedron Letters 1968, 1105–1110.Google Scholar
  218. [218]
    Nakanishi, K., M. Koreeda, S. Sasaki, M. L. Chang, and H. Y. Hsu: Insect hormones. The structure of ponasterone A, an insect-moulting hormone from the leaves of Podocarpus nakaii Hay. Chem. Commun. 1966, 915–917.Google Scholar
  219. [219]
    Neufeld, G. J., J. A. Thomson, and D. H. S. Horn: Short-term effects of crustecdysone (20-hydroxyecdysone) on protein and RNA synthesis in third instar larvae of Calliphora. J. Insect Physiol. 14, 789–804 (1968).CrossRefGoogle Scholar
  220. [220]
    Noväk, Y. J. A.: (see reference No. 219 on p. 79).CrossRefGoogle Scholar
  221. [221]
    Noväk, V. J. A.: (see reference No. 218 on p. 79).CrossRefGoogle Scholar
  222. [222]
    Oberlander, H.: Ecdysone and DNA synthesis in cultured wing dises of the wax moth, Galleria mellonella. J. Insect Physiol. 15, 1803–1806 (1969).CrossRefGoogle Scholar
  223. [223]
    Oberlander, H.: α-ecdysone induced DNA synthesis in cultured wing discs of Galleria mellonella: Inhibition by 20-hydroxyecdysone and 22-isoecdysone. J. Insect Physiol. 18, 223–228 (1972).CrossRefGoogle Scholar
  224. [224]
    Ohnishi, E., T. Ohtaki, and S. Fukuda: Ecdysone in the eggs of Bombyx silkworm. Proc. Japan. Acad. 47, 413–415 (1971).Google Scholar
  225. [225]
    Ohtaki, T.: On the delayed putation of the fleshfly, Sarcophaga peregrina Robineau-Desvoidy. Jap. J. Med. Sci. Biol. 19, 97–104 (1966).Google Scholar
  226. [226]
    Ohtaki, T., R. D. Milkman, and C. M. Williams: Ecdysone and ecdysone analogues: Their assay on the fleshfly Sarcophaga peregrina. Proc. nat. Acad. Sci. (Amer.) 58, 981–984 (1967).CrossRefGoogle Scholar
  227. [227]
    Ohtaki, T., R. D. Milkman, and C. M. Williams: Dynamics of ecdysone secretion and action in the fleshfly Sarcophaga peregrina. Biol. Bull. Woods Hole 135, 322–334 (1968).CrossRefGoogle Scholar
  228. [228]
    Ohtaki, T., and C. M. Williams: Inactivation of α-ecdysone and cyasterone by larvae of the fleshfly, Sarcophaga peregrina and pupae of the silkworm, Samia cynthia. Biol. Bull. 138, 326–333 (1970).CrossRefGoogle Scholar
  229. [229]
    Otaka, T., S. Okuji, and M. Uchiyama: Stimulation of protein synthesis in mouse liver by ecdysterone. Chem. Pharm. Bull. Tokyo 17, 75–81 (1969).PubMedCrossRefGoogle Scholar
  230. [230]
    Otaka, T., and M. Uchiyama: Stimulatory effect of ecdysterone on RNA synthesis in mouse liver. Chem. Pharm. Bull. (Tokyo) 17, 1883–1888 (1969).CrossRefGoogle Scholar
  231. [231]
    Otaka, T., M. Uchiyama, T. Takemoto, and H. Hikino: Stimulatory effect of insect metamorphosing steroids from ferns on protein synthesis in mouse liver. Chem. Pharm. Bull. (Tokyo) 17, 1352–1355 (1969).CrossRefGoogle Scholar
  232. [232]
    Piechowska, M. J., Z. Sinkiewicz, and M. Bielinska: Hormones of insect metamorphosis. Post. Biochem. 16, 449–481 (1970).Google Scholar
  233. [233]
    Pipa, R. L.: Insect neurometamorphosis. IV. Effects of the brain and synthetic α-ecdysone upon interganglionie connective shortening in Galleria mellonella L. J. Exp. Zool. 170, 181–182 (1969).CrossRefGoogle Scholar
  234. [234]
    Plagge, E., and E. Becker: Wirkung arteigener und artfremder Yerpuppungshormone in Extrakten. Naturwissenschaften 26, 430–431 (1938).CrossRefGoogle Scholar
  235. [235]
    Poels, C. L. M.: Time sequence in the expression of various developmental characters induced by ecdysterone in Drosophila hydei. Develop. Biol. 23, 210–225 (1970).PubMedCrossRefGoogle Scholar
  236. [236]
    Poels, C. L., A. de Loor, and H. D. Berendes: Functional and structural changes in Drosophila salivary gland cells triggered by ecdysterone. J. Insect Physiol. 17, 1717–1729 (1971).PubMedCrossRefGoogle Scholar
  237. [237]
    Postlethwait, J. H., and H. A. Schneiderman: Effects of an ecdysone on growth and cuticle formation of Drosophila imaginal dises cultured in vivo. Biol. Bull. Woods Hole 135, 431–432 (1968).Google Scholar
  238. [238]
    Postlethwait, J. H., and H. A. Schneiderman: Induction of metamorphosis by ecdysone analogues: Drosophila imaginal discs cultured in vivo. Biol. Bull. Woods Hole 138, 47–55 (1970).CrossRefGoogle Scholar
  239. [239]
    Price, C. M.: Pupation inhibition factor in the larva of the blowfly Calliphora erythrocephala. Nature 228, 876–877 (1970).PubMedCrossRefGoogle Scholar
  240. [240]
    Badford, S. Y., and D. W. Misch: The eytological effect of ecdysterone on the midgut cells of the flesh-fly Sarcophaga bullala. J. Cell. Biol. 49, 702–711 (1971).CrossRefGoogle Scholar
  241. [241]
    Raikow, R., and J. W. Fristrom: Effects of β-ecdysone on RNA metabolism of imaginal dises of Drosophila melanogaster. J. Insect Physiol. 17, 1599–1614 (1971).PubMedCrossRefGoogle Scholar
  242. [242]
    Bees, H. H.: Ecdysones. In: Goodwin, T. W., ed.: Aspects of terpenoid chemistry and bioehemistry, pp. 181–222. London-New York: Academic Press. 1971.Google Scholar
  243. [243]
    Reidenbach, J. M.: Action d’une ecdysone de synthèse sur la mue et le fonctionnement ovarien chez le crustacé isopode Idothea balthica (Pallas). C. R. Acad. Sci. (Paris) 273, 1614–1617 (1971).Google Scholar
  244. [244]
    Reinecke, J. P., and J. D. Robbins: Reaetion of an insect cell line to ecdysterone. Exp. Cell Res. 64, 335–338 (1971).PubMedCrossRefGoogle Scholar
  245. [245]
    Řežábovä, B., J. Hora, V. Landa, Y. Černý, and F. Šorm: Sterilizing effect of some 6-ketosteroids on housefly (Musca domestica L.). Steroids 11, 475–496 (1968).PubMedCrossRefGoogle Scholar
  246. [246]
    Bichman, K., and H. Oberlander: Effects of fat body on α-ecdysone induced morphogenesis in cultured wing discs of the wax moth, Galleria mellonella. J. Insect Physiol. 17, 269–276 (1971).CrossRefGoogle Scholar
  247. [247]
    Rimpler, H.: Pterosteron, Polypodin B und ein neues ecdysteronartiges Steroid (Vitieosteron E) aus Vitex megapotamica (Verbenacae). Tetrahedron Letters 1969, 329–333.Google Scholar
  248. [248]
    Rimpler, H., und G. Schulz: Vorkommen von 20-Hydroxy-ecdyson in Vitex megapotamica. Tetrahedron Letters 1967, 2033–2035.Google Scholar
  249. [249]
    Robbins, W. E., J. N. Kaplanis, M. J. Thompson, T. J. Shortino, C. F. Cohen, and S. C. Joyner: Ecdysones and analogs: effects on development and reproduction of insects. Science 161, 1158–1159 (1968).PubMedCrossRefGoogle Scholar
  250. [250]
    Robbins, W. E., J. N. Kaplanis, M. J. Thompson, T. J. Shortino, and S. C. Joyner: Ecdysones and synthetic analogs: Molting hormone activity and inhibitive effeets on insect growth, metamorphosis and reproduction. Steroids 16, 105–125 (1970).PubMedCrossRefGoogle Scholar
  251. [251]
    Robbins, W. E., M. J. Thompson, J. N. Kaplanis, and T. J. Shortino: Conversion of cholesterol to 7-dehydroeholesterol in aseptically reared German cockroaches. Steroids 4, 635 (1964).CrossRefGoogle Scholar
  252. [252]
    Romer, F.: Häutungshormone in den Oenocyten des Mehlkäfers. Naturwissenschaften 58, 324–325 (1971).PubMedCrossRefGoogle Scholar
  253. [253]
    Sahota, T. S., and A. Mansingh: Cellular response to ecdysone: RNA and protein synthesis in larval tissues of oak silkworm Antheraea pernyi. J. Insect Physiol 16, 1649–1654 (1970).PubMedCrossRefGoogle Scholar
  254. [254]
    Sakurai, H., and K. Hasegawa: Response of isolated pupal abdomens of silkworm Bombyx mori L., to injected ponasterone A (Lepidoptera: Bombycidae). Appl. Ent. Zool. 4, 59–65 (1969).Google Scholar
  255. [255]
    Sato, Y., M. Sakai, S. Imai, and S. Fujioka: Ecdysone activity of plant-originated moulting hormones applied on the body surface of Lepidopterous larvae. Appl. Ent. Zool. 3, 49–51 (1968).Google Scholar
  256. [256]
    Sauer, H. H., R. D. Bennett, and E. Heftmann: Ecdysterone bio-synthesis in Podocarpus elata. Phytochemistry 7, 2027–2030 (1968).CrossRefGoogle Scholar
  257. [257]
    Saunders, J. W., Jr.: Death in embryonic systems. Science 154, 604–606 (1966).PubMedCrossRefGoogle Scholar
  258. [258]
    Schaller, F.: Action de l’ecdysone sur des larves d’Aeschna cyanea Müll. (Insecto Odonate) en diapause. Mém. Soc. Sci. Nat. Math. (Cherbourg) 51, 135–140 (1966).Google Scholar
  259. [259]
    Schaller, F., and J. C. Andries: Role de l’ecdysone dans la multiplication des cellules de régénération de l’intestin moyenne chez la larve d’Aeschna cyanea Müll. (Insecte Odonate). C. R. hebd. Séanc. Acad. Sci. (Paris) D 271, 426–429 (1970).Google Scholar
  260. [260]
    Sehnal, F.: Endocrines of arthropods. Chem. Zool. 6, 307–345 (1971).Google Scholar
  261. [261]
    Sehnal, F.: Action of ecdysone on ligated larvae of Galleria mellonella L. (Lepidoptera): Induction of development. Acta ent. Bohemoslov. 69, 143–155 (1972).Google Scholar
  262. [262]
    Sekeris, C. E.: Zum Tyrosinstoffwechsel der Insekten. XII. Reinigung, Eigenschaften und Substratspezialität der Dopa-Decarboxylase. Z. Physiol. Chem. 332, 70–78 (1963).CrossRefGoogle Scholar
  263. [263]
    Sekeris, C. E.: Action of ecdysone on RNA and protein metabolism in the blowfly, Caliphora erythrocephala. In: Karlson, P., ed.: Mechanisms of hormone action, pp. 149–167. Stuttgart: G. Thieme. 1965.Google Scholar
  264. [264]
    Sekeris, C. E., P. P. Dukes, and W. Schmied: The action of ecdysone on nucleic acid metabolism in insects. Biochem. J. 97, 23–24 (1965).Google Scholar
  265. [265]
    Sekeris, C. E., P. P. Dukes, and W. Schmied: Wirkung von Ecdyson auf Epidermiszellkerne von Calliphora-Larven in vitro. Z. Physiol. Chem. 341, 152–154 (1965).CrossRefGoogle Scholar
  266. [266]
    Sekeris, C. E., and P. Karlson: Zum Tyrosinstoffweehsel der Insekten. VII. Der katabolische Abbau des Tyrosins und die Biogenese der Sklerotisierungssubstanze, N-Acetyl-Dopamin. Biochem. biophys. Acta 62, 103–113 (1962).PubMedCrossRefGoogle Scholar
  267. [267]
    Sekeris, C. E., and P. Karlson: On the mechanic of hormone action. II. Ecdysone and protein synthesis. Arch. Biochem. Biophys. 105, 483–487 (1964).PubMedCrossRefGoogle Scholar
  268. [268]
    Sekeris, C. E., and P. Karlson: Biosynthesis of catecholamines in insects. Pharmac. Rev. 18, 89–94 (1966).Google Scholar
  269. [269]
    Sekeris, C. E., and N. Lang: Induction of dopa-decarboxylase activity by insect messenger RNA in an in vitro amino acid incorporating system from rat liver. Life Sciences 3, 625–632 (1964).PubMedCrossRefGoogle Scholar
  270. [270]
    Sekeris, C. E., N. Lang, and P. Karlson: Zum Wirkungsmechanismus der Hormone. V. Der Einfluß von Ecdyson auf den RNA-Stoffwechsel in der Epidermis der Sehmeißfliege Calliphora erythrocephala. Z. Physiol. Chem. 341, 36–43 (1965).CrossRefGoogle Scholar
  271. [271]
    Sekeris, C. E., and D. Mergenhagen: Phenoloxydase system of the blowfly Calliphora erythrocephala. Science 145, 68–69 (1964).PubMedCrossRefGoogle Scholar
  272. [272]
    Shaaya, E.: Der Eedysontiter während der Insektenentwicklung. VI. Untersuchungen über die Verteilung des Ecdysons in versehiedenen Geweben von Calliphora erythrocephala und über seine biologische Halbwertszeit. Z. Naturforsch. 24 b, 718–721 (1969).Google Scholar
  273. [273]
    Shaaya, E., and P. Karlson: Der Eedysontiter während der Insekten-entwieklung. II. Die Postembryonale Entwicklung der Schmeißfliege Calliphora erythrocephala Meig. J. Insect Physiol. 11, 65–69 (1965).CrossRefGoogle Scholar
  274. [274]
    Shaaya, E., and P. Karlson: Der Ecdysontiter während der Insekten-entwicklung. IV. Die Entwicklung der Lepidopteren Bombyx mori L. und Cerura vinula L. Develop. Biol. 11, 424–432 (1965).CrossRefGoogle Scholar
  275. [275]
    Shaaya, E., and C. E. Sekeris: Ecdysone during insect development. III. Activities of some enzymes of tyrosine metabolism in comparison with ecdysone titer during the development of the blowfly, Calliphora erythrocephala Meig. Gen. Comp. Endocrinol. 5, 35–39 (1965).CrossRefGoogle Scholar
  276. [276]
    Shigematsu, H., and H. Moriyama: Effect of ecdysterone on fibroin synthesis in the posterior division of the silk gland of the silkworm, Bombyx mori. J. Insect Physiol. 16, 2015–2022 (1970).CrossRefGoogle Scholar
  277. [277]
    Siddall, J. B., A. D. Cross, and J. H. Fried: Synthetic studies on insect hormones. II. The synthesis of ecdysone. J. Amer. chem. Soc. 88, 862–863 (1966).CrossRefGoogle Scholar
  278. [278]
    Siddall, J. B., D. H. S. Horn, and E. J. Middleton: Synthetic studies on insect hormones. The synthesis of a possible metabolite of erustecdysone (20-hydroxyecdysone). Chem. Commun. 1967, 899–900.Google Scholar
  279. [279]
    Siddall, J. B., J. P. Marshall, A. Bowers, A. D. Cross, J. A. Edwards, and J. H. Fried: Synthetic studies on insect hormones. I. Synthesis of the tetracyclie nucleus of ecdysone. J. Amer. chem. Soc. 88, 379–380 (1966).CrossRefGoogle Scholar
  280. [280]
    Siew, Y. C., and L. I. Gilbert: (see reference No. 302 on p. 297).PubMedCrossRefGoogle Scholar
  281. [281]
    Släma, K.: (see reference No. 311 on p. 297).Google Scholar
  282. [282]
    Socha, B., and F. Sehnal: (see reference No. 320 on p. 298).CrossRefGoogle Scholar
  283. [283]
    Souza, N. J. de, E. L. Ghisalberti, H. H. Bees, and T. W. Goodwin: Studies on insect moulting hormones: biosynthesis of ponasterone A and ecdysterone from /2-14C/-mevalonate in Taxus baccata. Biochem. J. 114, 895–896 (1969).PubMedGoogle Scholar
  284. [284]
    Souza, N. J. de, E. L. Ghisalberti, H. H. Rees, and T. W. Goodwin: Studies on insect moulting hormones: biosynthesis of ecdysone, ecdysterone and 5-ß-hydroxyecdysterone in Polypodium vulgare. Phytochemistry 9, 1247–1252 (1970).CrossRefGoogle Scholar
  285. [285]
    Spielman, A., R. W. Gwadz, and W. A. Anderson: Ecdysone-initiated ovarian development in mosquitoes. J. Insect Physiol. 17, 1807–1814 (1971).PubMedCrossRefGoogle Scholar
  286. [286]
    Staal, G. B.: Plants as a source of insect hormones. Koninkl. Nederl. Akad. Wettensehap. C 70, 409–418 (1961).Google Scholar
  287. [287]
    Stamm, M. D.: Estudios sobre hormones de invertebrados. II. Aistami-endo de hormonas de la metamorfosis en el Ortóptero Dociostaurus maroccanus. Anales real Soc. Espan. Fis. Quim. B 55, 171–178 (1959).Google Scholar
  288. [288]
    Stewart, J. B., and J. P. Greeb: Ecdysone mediated events in the moulting of the fiddler crab, Uca pugilator. Amer. Zool. 9, 579 (1969).Google Scholar
  289. [289]
    Svoboda, J. A., R. F. N. Hutchins, M. J. Thompson, and W. E. Robbins: 22-trans-eholesta-5,22,24-trien-3 β-ol-an intermediate in the conversion of stigmasterol to cholesterol in the tobacco hornworm Manduca sexta (Johannson). Steroids 14, 469–476 (1969).PubMedCrossRefGoogle Scholar
  290. [290]
    Takeda, N.: Effect of ecdysterone on spermatogenesis in the dia-pausing slug moth pharate pupa, Monema flavescens. J. Insect Physiol. 18, 571–580 (1972).CrossRefGoogle Scholar
  291. [291]
    Takemoto, T., S. Arihara, Y. Hikino, and H. Hikino: Isolation of insect moulting substances from Pteridium aquillinum var. latiusculum. Chem. Pharm. Bull. 16, 762 (1968).CrossRefGoogle Scholar
  292. [292]
    Takemoto, T., Y. Hikino, T. Arai, and H. Hikino: structure of lemmasterone, a novel C29 insect-moulting substance from Lemma-phyllum microphyllum. Tetrahedron Letters 1968, 4061–4064.Google Scholar
  293. [293]
    Takemoto, T., Y. Hikino, T. Arai, M. Kawahara, Ch. Konno, S. Arihara, and H. Hikino: Isolation of insect moulting substances from Matteuccia struthiopteris, Lastrea thelypteris and Onoclea sensibilis. Chem. Pharm. Bull. 15, 1816 (1967).Google Scholar
  294. [294]
    Takemoto, T., Y. Hikino, T. Arai, Ch. Konno, S. Nabetani, and H. Hikino: Isolation of insect moulting substances from Pleopeltis thunbergiana, Neocheiropteris ensata, and Lemmaphyllum microphyllum. Chem. Pharm. Bull. 16, 759–760 (1968).CrossRefGoogle Scholar
  295. [295]
    Takemoto, T., Y. Hikino, S. Arihara, and H. Hikino: Absolute configuration of inokosterone, an insect-moulting substance from Achyranthes Fauriei. Tetrahedron Letters 1968, 2475–2478.Google Scholar
  296. [296]
    Takemoto, T., Y. Hikino, H. Hikino, S. Ogawa, and N. Nishimoto: structure of Rubresterone, a novel C19 Metabolite of insect-moult-ing substances from Achyranthes rubrofusca. Tetrahedron Letters 1968, 3053–3056.Google Scholar
  297. [297]
    Takemoto, T., Y. Hikino, H. Hikino, S. Ogawa, and N. Nishimoto: Rubrosterone, a metabolite of insect metamorphosing substance from Achyranthes rubrofusca: structure and absolute configuration. Tetrahedron 25, 1241–1248 (1969).PubMedCrossRefGoogle Scholar
  298. [298]
    Takemoto, T., Y. Hikino, H. Jin, T. Arai, and H. Hikino: Isolation of insect moulting substances from Osmunda japonica and Osmunda asiatica. Chem. Pharm. Bull. 16, 1636, (1968).CrossRefGoogle Scholar
  299. [299]
    Takemoto, T., Y. Hikino, H. Jin, and H. Hikino: Isolation of ponasterone A from Taxus cuspidata var. nana. J. Pharm. Soc. Japan 88, 359 (1968).Google Scholar
  300. [300]
    Takemoto, T., Y. Hikino, K. Nomoto, and H. Hikino: structure of cyasterone, a novel C29 insect-moulting substance from Cyathula capitata. Tetrahedron Letters 1967, 3191–3194.Google Scholar
  301. [301]
    Takemoto, T., Y. Hikino, T. Okuyama, S. Arihara, and H. Hikino: structure of shidasterone, a novel insect-moulting substance from Blechnum niponicum. Tetrahedron Letters 1968, 6095–6098.Google Scholar
  302. [302]
    Takemoto, T., K. Nomoto, and H. Hikino: structure of amarasterone A and B, novel C29 insect-moulting substances from Cyathula capitata. Tetrahedron Letters 1968, 4953–4956.Google Scholar
  303. [303]
    Takemoto, T., K. Nomoto, Y. Hikino, and H. Hikino: structure of capitasterone, a novel C29 insect-moulting substance from Cyathula capitata. Tetrahedron Letters 1968, 4929–4932.Google Scholar
  304. [304]
    Takemoto, T., S. Ogawa, and N. Nishimoto: Isolation of the moulting hormones of insects from Achyranthis radix. J. Pharm. Soc. Japan 87, 325–327 (1967).Google Scholar
  305. [305]
    Takemoto, T., S. Ogawa, and N. Nishimoto: Studies on the eonstit-uents of Achyranthis radix. II. Isolation of the insect-moulting hormones. J. Pharm. Soc. Japan 87, 1469–1473 (1967).Google Scholar
  306. [306]
    Takemoto, T., S. Ogawa, and N. Nishimoto: Studies on the eonstit-uents of Achyranthis radix. III. Structure of inokosterone. J. Pharm. Soc. Japan 87, 1474–1477 (1967).Google Scholar
  307. [307]
    Takemoto, T., S. Ogawa, N. Nishimoto, H. Hirayama, and S. Taniguchi: Isolation of the insect-moulting hormones from mulberry leaves. J. Pharm. Soc. Japan 87, 748 (1967).Google Scholar
  308. [308]
    Takemoto, T., S. Ogawa, N. Nishimoto, and H. Hoffmeister: Steroide mit Häutungshormon-Aktivität aus Tieren und Pflanzen. Z. Naturforsch. 22 b, 681–682 (1967).Google Scholar
  309. [309]
    Takemoto, T., S. Ogawa, N. Nishimoto, and S. Taniguchi: Studies on the constituents of Achyranthis radix. IV. Isolation of the insect-moulting hormones from Formosan Achyranthes spp. J. Pharm. Soc. Japan 87, 1478–1480 (1967).Google Scholar
  310. [310]
    Takemoto, T., T. Okuyama, S. Arihara, Y. Hikino, and H. Hikino: Isolation of insect-moulting substances from Blechnum amabile and Blechnum niponicum. Chem. Pharm. Bull. 17, 1973–1974 (1969).PubMedCrossRefGoogle Scholar
  311. [311]
    Thomson, J. A.: The interpretation of puff patterns in polytene chromosomes. In: Currents in Modern Biology 2, 333–338 (1969).PubMedGoogle Scholar
  312. [312]
    Thomson, J. A., and D. H. S. Horn: Effect of exogenous moulting hormones on puparium formation in Calliphora. Aust. J. Biol. Sci. 22, 761–765 (1969).Google Scholar
  313. [313]
    Thomson, J. A., F. P. Imray, and D. H. S. Horn: An improved Calliphora bioassay for insect moulting hormones. Aust. J. Exp. Biol. Med. Sci. 48, 321–328 (1970).CrossRefGoogle Scholar
  314. [314]
    Thomson, J. A., J. F. Kinnear, M. D. Martin, and D. H. S. Horn: Effects of crustecdysone (20-hydroxyecdysone) on synthesis, release, and uptake of proteins by the larval fat body of Calliphora. Life Sciences 10, 203–211 (1971).CrossRefGoogle Scholar
  315. [315]
    Thompson, M. J., J. N.Kaplanis, W.E.Bobbins, and B.T. Yamamoto: 20,26-Dihydroxyecdysone, a new steroid with moulting hormone activity from tobacco hornworm Manduca sexta (Johannson). Chem. Commun. 1967, 650–653.Google Scholar
  316. [316]
    Thompson, M. J., W. E. Robbins, J. N. Kaplanis, C. F. Cohen, and S. M. Lancaster: Synthesis of analogs of α-ecdysone. A simplified synthesis of 2 β,3 β-14 α-trihydroxy-7-en-6-one-5 β-steroids. Steroids 16, 85–104 (1970).PubMedCrossRefGoogle Scholar
  317. [317]
    Thomson, J. A., D. C. Bogers, M. M. Gunson, and D. H. S. Horn: Developmental changes in the pattern of cellular distribution of exogenous tritium-labelled crustecdysone in larval tissues of Calliphora. Cytobios 6, 79–88 (1970).Google Scholar
  318. [318]
    Thomson, J. A., J. B. Siddall, M. N. Galbraith, D. H. S. Horn, and E. J. Middleton: The biosynthesis of ecdysones in the blowfly Calliphora stygia. Chem. Commun. 1969, 669–670.Google Scholar
  319. [319]
    Velgovä,H.,V. Černý, F. Šorm, and K. Släma: Furthercompounds with antisclerotization effect on Pyrrhocoris apterus L. larvae: Structure and activity correlations. Coll. Czech. Chem. Commun. 34, 3354–3376 (1969).Google Scholar
  320. [320]
    Velgovä, H., L. Lábler, V. Černý, F. šorm, and K. Släma: Some further compounds produeing moulting deficieneies in an insect. Coll. Czech. Chem. Commun. 33, 242–256 (1968).Google Scholar
  321. [321]
    Weirich, G., and P. Karlson: Distribution of tritiated ecdysone in salivary glands and other tissues of Rhynchosciara and Chironomus larvae. An autoradiographic study. Roux Arch. 164, 170–181 (1969).CrossRefGoogle Scholar
  322. [322]
    Wiechert, R., U. Kerb, P. Hocks, A. Furlenmeier, A. Fürst, A. Langemann, and G. Waldvogel: Zur Synthese des Ecdysons. Synthesen von 2 β,3 β-Dihydroxy-6-keto-A/B-cis Steroiden. Helv. 49, 1581–1591 (1966).CrossRefGoogle Scholar
  323. [323]
    Wigglesworth, V. B.: The physiology of ecdysis in Rhodnius. II. Fac-tors controlling moulting and metamorphosis. Quart. J. Micr. Sci. 77, 191–222 (1934).Google Scholar
  324. [324]
    Wigglesworth, V. B.: The action of moulting hormone and juvenile hormone at the cellular level in Rhodnius prolixus. J. Exp. Biol. 40, 231–245 (1963).Google Scholar
  325. [325]
    Wilde, J. de: Hormones and diapause. Exc. Med. Int. Congr. Ser. 184, 356–364 (1968).Google Scholar
  326. [326]
    Williams, C. M.: Ecdysone and ecdysone-analogues: Their assay and action on diapausing pupae of the Cynthia silkworm. Biol. Bull. Woods Hole 134, 344–355 (1968).CrossRefGoogle Scholar
  327. [327]
    Williams, C. M.: (reference No. 374 on p. 301) (1970).Google Scholar
  328. [328]
    Willig, A., H. H. Rees, and T. W. Goodwin: Biosynthesis of insect moulting hormones in isolated ring glands and whole larvae of Calliphora. J. Insect Physiol. 17, 2317–2326 (1971).CrossRefGoogle Scholar
  329. [329]
    Wright, J. E.: Hormonal termination of larval diapause in Derma-centor albipictus. Science 163, 390–391 (1969).PubMedCrossRefGoogle Scholar
  330. [330]
    Wright, J. E., W. F. Chamberlain, and C. C. Barrett: Ovarian maturation in stable flies: inhibition by 20-hydroxyecdysone. Science 172, 1247–1248 (1971).PubMedCrossRefGoogle Scholar
  331. [331]
    Wright, J. E., and J. N. Kaplanis: Ecdysone and ecdysone-analogues: effeets on fecundity of the stable fly Stomoxys calcitrans. Ann. Ent. Soc. Amer. 63, 622–623 (1970).Google Scholar
  332. [332]
    Wyatt, G. R.: Maeromolecular biosynthesis in insect metamorphosis. Proc. 17th Int. Congr. Biochem., Tokyo, VII-3 (1967).Google Scholar
  333. [333]
    Wyatt, G. R.: (see reference No. 386 on p. 301) (1972).Google Scholar
  334. [334]
    Wyatt, S. S., and G. R. Wyatt: Stimulation of RNA and protein synthesis in silkmoth pupal wing tissue by ecdysone in vitro. Gen. Comp. Endocrinol. 16, 369–474 (1971).PubMedCrossRefGoogle Scholar
  335. [335]
    Yatschyuk, Ja. K., and G. M. Segel: On the isolation of ecdysterone. Chimia Prirodnych Socdinenij 1970, 281.Google Scholar
  336. [336]
    Yoshida, T., T. Otaka, M. Uchiyama, and S. Ogawa: Effect of ecdysterone on hyperglycaemia in experimental animals. Biochem. Pharmacol. 20, 3263–3268 (1971).PubMedCrossRefGoogle Scholar
  337. [337]
    Yu, S. J., and L. C. Terriere: Hormonal modification of microsomal oxidase aetivity in the housefly. Life Sciences 10, 1173–1185 (1971).CrossRefGoogle Scholar
  338. [338]
    Žďárek, J., and G. Fraenkel: Correlated effeets of ecdysone and neurosecretion in puparium formation (pupariation) of flies. Proc. nat. Acad. Sci. (Amer.) 64, 565–572 (1969).CrossRefGoogle Scholar
  339. [339]
    Žďárek, J., and G. Fraenkel: Overt and covert effeets of endogenous and exogenous ecdysone in puparium formation of flies. Proc. nat. Acad. Sci. (Amer.) 67, 331–337 (1970).CrossRefGoogle Scholar
  340. [340]
    Žďárek, J., and G. Fraenkel: Neurosecretory control of ecdysone release during puparium formation of flies. Gen. Comp. Endocrinol. 17, 483–489 (1971).PubMedCrossRefGoogle Scholar
  341. [341]
    Žďárek, J., and G. Fraenkel: The mechanism of puparium formation in flies. J. Exp. Zool. 179, 315–324 (1972).CrossRefGoogle Scholar
  342. [342]
    Žďárek, J., and K. Sláma: (see reference No. 391 on p. 302).PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1974

Authors and Affiliations

  • K. Sláma
    • 1
  • M. Romaňuk
    • 2
  • F. Šorm
    • 2
  1. 1.Institute of Organic Chemistry and BiochemistryInstitute of EntomologyPragueCzech Republic
  2. 2.Institute of Organic Chemistry and BiochemistryCzechoslovak Academy of SciencesPragueCzech Republic

Personalised recommendations