Advertisement

Brief Survey of the Neuroendocrine System in Insects

  • K. Sláma
  • M. Romaňuk
  • F. Šorm

Abstract

This introductory chapter represents a condensed review of the components of the neuroendocrine system of insects and the effects of their extirpation or transplantation on development. We have separated these effects from those of plant and animal extracts, other isolation products, or synthetic compounds, which will be described in the following chapters. The recent literature pertaining to insect hormones has been reviewed in several monographs. The results obtained by classical endocrinological techniques are described in detail in the book by Pflugfelder [237] which contains detailed descriptions of insect endocrines from the period when morphological studies predominated. An extensive list of the literature pertaining to the endocrine glands of insects with discussions on developmental theories in insect endocrinology is contained in a book by Novák [218]. Comparative data on insects and other invertebrates, especially crustaceans, may be found in a monograph by Gersch [90] and a brief but very instructive book of comparative endocrinology of invertebrates containing numerous illustrations has been prepared by Highnam and Hill [126]. Comparative data on the structure and function of neurosecretory system may be found in an extensive work by Gabe [88]. The basic physiological data for understanding the mode of action of insect hormones are contained in a book by Wigglesworth [370], and a monograph by Wigglesworth [371] on the physiology of metamorphosis of Rhodnius.

Keywords

Larval Instar Juvenile Hormone Neurosecretory Cell Moult Cycle Corpus Allatum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Adams, T. S.: Ovarian regulation of the corpus allatum in the housefly, Musca domestica. J. Insect Physiol. 16, 349–360 (1970).PubMedGoogle Scholar
  2. [2]
    Adiyodi, K. G., and K. K. Nayar: Haemolymph proteins and reproduction in Periplaneta americana. Current Sci. 35, 587–588 (1966).Google Scholar
  3. [3]
    Adiyodi, K. G., and K. K. Nayar: Haemolymph proteins and reproduction in Periplaneta americana: The nature of conjugated proteins and the effect of cardiac-allat-ectomy on protein metabolism. Biol. Bull. Woods Hole 133, 271–286 (1967).Google Scholar
  4. [4]
    Aggabwal, S. K.: Histochemistry of vitellogenesis in the adult mealworm, Tenebrio molitor L. (Coleoptera, Tenebrionidae). La Cellule 64, 371–379 (1963).Google Scholar
  5. [5]
    Altmann, G. G.: Hormonale Steuerung des Wasserhaushaltes der Honigbiene. Zool. Anz. Suppl. 19, 107–112 (1956).Google Scholar
  6. [6]
    Barth, R. H., Jr.: The endocrine control of mating behaviour in the cockroach, Byrsotria fumigata (Guérin). Gen. Comp. Endocrinol. 2, 53–69 (1962).PubMedGoogle Scholar
  7. [7]
    Barth, R. H., Jr.: Insect mating behaviour: endocrine control of a chemical communication system. Science 149, 882–883 (1965).PubMedGoogle Scholar
  8. [8]
    Barth, R. H., Jr.: The comparative physiology of reproductive processes in cockroaches. Part I. Mating behaviour and its endocrine control. Advances Reprod. Physiol. 3, 167–207 (1968).Google Scholar
  9. [9]
    Beaulaton, J.: Localisation d’activités lytiques dans la glande prothoracique du Ver à soie du chene (Antheraea pernyi Guér.) au stade prénymphal. I. Structures lysosomiques appareil de Golgi et ergastoplasme. J. Microscopie 6, 179–200 (1967).Google Scholar
  10. [10]
    Beaulaton, J.: Localisation d’activités lytiques dans la glande prothoracique du Ver à soie du chene (Antheraea pernyi Guér.) au stade prénymphal. II. Les vacuoles autolytiques (cytolysomes). J. Microscopie 6, 349–370 (1967).Google Scholar
  11. [11]
    Beaulaton, J.: Modifications ultrastructurales des cellules séerétriees de la glande prothoracique de Vers à soie au cours des deux derniers ages larvaires. II. Le glycogéne, ses relations avee le chondriome et le rétieulum endoplasmique. J. Microscopie 7, 673–692 (1968).Google Scholar
  12. [12]
    Beaulaton, J.: Modifications ultrastructurales des cellules sécrétrices de la glande prothoracique de Vers à soie au cours des deux derniers ages larvaires. III. Les lamelles annelées et leur dégradation. J. Microscopie 7, 895–906 (1968).Google Scholar
  13. [13]
    Beaulaton, J.: Étude ultrastructurale et cytochimique des glandes prothoraciques de Vers à soie aux quatrième et einquième ages larvaires. I. La tunica propria et ses relations avec les fibres conjonctives et les hémocytes. J. Ultrastruct. Res. 23, 474–498 (1968).PubMedGoogle Scholar
  14. [14]
    Beaulaton, J.: Étude ultrastructurale et cytochimique des glandes prothoraciques de Vers à soie aux quatrième et einquième ages larvaires. II. Les cellules interstitielles et les fibres nerveuses. J. Ultrastruct. Res. 23, 499–515 (1968).PubMedGoogle Scholar
  15. [15]
    Beaulaton, J.: Étude ultrastructurale et cytochimique des glandes prothoraciques de Vers à soie aux quatriéme et einquième ages larvaires. III. Les cellules sécrétrices. J. Ultrastruct. Res. 23, 516–536 (1968).PubMedGoogle Scholar
  16. [16]
    Bell, W. J.: Starvation induced oöcyte resorption and yolk protein salvage in Periplaneta americana. J. Insect Physiol. 17, 1099–1111 (1971).Google Scholar
  17. [17]
    Bentz, F., and A. Girardie: Action de la pars intercerebralis et des corpora allata sur les protéines ovariennes de Locusta migratoria migratoroides (Orthoptére) au cours de la vitellogenése. C. R. Acad. Sci. (Paris) 269, 2014–2017 (1969).Google Scholar
  18. [18]
    Bentz, F., A. Girardie, and M. Cazal: Étude éléctrophoretique des variations de la proteinémie chez Locusta migratoria pendant la maturation sexuelle. J. Insect Physiol. 16, 2257–2270 (1970).Google Scholar
  19. [19]
    Bentz, F., L. Joly, and P. Joly: Action des corpora allata sur les mitochondries d’un muscle alaire chez Locusta migratoria. Bull. Soc. Zool. France 94, 195–199 (1969).Google Scholar
  20. [20]
    Berreur, P.: Effects de l’ablation et de l’implantation de l’anneau de Weismann sur l’évolution des acides ribonucléiques au cours de la métamorphose de Calliphora erythrocephala Meig. (Diptére). C. R. Acad. Sci. (Paris) 252, 4201–4203 (1961).Google Scholar
  21. [21]
    Berry, S. J., A. Krishnakumaran, H. Oberlander, and H. A. Schneidermann: Effects of hormones and injury on RNA synthesis in saturniid moths. J. Insect Physiol. 13, 1511–1537 (1967).Google Scholar
  22. [22]
    Bessé, N. De, and M. Cazal: Action des extraits d’organs périsympathiques et de corpora cardiaca sur les ovaries de quelques insects. C. R. Acad. Sci. (Paris) 266, 615–618 (1968).Google Scholar
  23. [23]
    Bloch, B., E. Thomsen, and M. Thomsen: The neurosecretory system of the adult Calliphora erythrocephala. III. Electron microscopy of the medial neurosecretory cells of the brain and some adjacent cells. Z. Zellforsch. 70, 185–208 (1966).PubMedGoogle Scholar
  24. [24]
    Blumenfeld, M., and H. A. Schneidermann: Effect of juvenile hormone on the synthesis and accumulation of a sex-limited blood protein in the Polyphemus silkmoth. Biol. Bull. Woods Hole 135, 466–475 (1968).Google Scholar
  25. [25]
    Bodenstein, D.: Studies on the humoral mechanisms in growth and metamorphosis of the cockroach, Periplaneta americana. J. Exp. Zool. 123, 413–431 (1953).Google Scholar
  26. [26]
    Bodenstein, D., and B. Sacktor: Cytochrome-c-oxidase activity during the metamorphosis of Drosophila virilis. Science 116, 299–300 (1952).PubMedGoogle Scholar
  27. [27]
    Bonner-Weir, S.: Control of moulting in an insect. Nature (London) 228, 580–581 (1970).Google Scholar
  28. [28]
    Bounhiol, J. J.: Dans quelques limits l’écérebration des larves de Lépidoptéres est-elle compatible avec leur nymphose. C. R. Acad. Sci. (Paris) 203, 1182–1184 (1936).Google Scholar
  29. [29]
    Bounhiol, J. J.: Métamorphose prématurée par ablation des corpora allata chez la jeune vers à soie. C. R. Acad. Sci. (Paris) 205, 175–177 (1937).Google Scholar
  30. [30]
    Bounhiol, J. J.: Recherches expérimentelles sur le déterminisme de la métamorphose chez les Lépidoptéros. Bull. Biol. France Belg. 24, 1–199 (1938).Google Scholar
  31. [31]
    Bowers, W. S., and S. Friedmann: Mobilization of fat body glycogen by an extract of corpus cardiacum. Nature (London) 198, 685 (1963).Google Scholar
  32. [32]
    Bowers, B., and B. Johnson: An electron microscope study of the corpora cardiaca and secretory neurons in the aphid, Myzus persicae (Sulz.) Gen. Comp. Endocrinol. 6, 213–230 (1966).Google Scholar
  33. [33]
    Bowers, B., and C. M. Williams: Physiology of insect diapause. XIII. DNA synthesis during the metamorphosis of the cecropia silkworm. Biol. Bull. Woods Hole 126, 205–219 (1964).Google Scholar
  34. [34]
    Brian, M. V.: The neurosecretory cells of the brain, the corpora cardiaca and corpora allata during caste differentiation in an ant. Acta Symp. Evol. Ins. Praha 1959, 167–171.Google Scholar
  35. [35]
    Brookes, V. J., and R. K. Dejmal: Yolk protein: Structural changes during vitellogenesis in the cockroach Leucophaea maderae. Science 160, 999–1001 (1968).PubMedGoogle Scholar
  36. [36]
    Brown, B. E.: Pharmacologically active constituents of the cockroach corpus cardiacum: resolution and some characteristics. Gen. Comp. Endocrinol. 5, 387–401 (1965).PubMedGoogle Scholar
  37. [37]
    Broza, M., and M. P. Pener: Hormonal control of the reproductive diapause in the grasshopper Oedipoda miniata. Experientia 25, 414–415 (1969).PubMedGoogle Scholar
  38. [38]
    Bückmann, D.: Die Auslösung der Umfärbung durch das Häutungs-hormon bei Cerura vinula L. (Lepidoptera, Notodontidae). J. Insect Physiol. 3, 159–189 (1959).Google Scholar
  39. [39]
    Cameron, M.: Secretion of an orthodiphenol in the corpus cardiacum of the insect. Nature (London) 172, 349 (1953).Google Scholar
  40. [40]
    Cazal, P.: Les glandes endocrines rétro-cérébrales des insectes. Bull. Biol. France Belg. suppl. 32, 1–10 (1948).Google Scholar
  41. [41]
    Cazal, P.: Role des corpora cardiaca sur le teneur en eau chez quelques Orthoptéres. C. R. Acad. Sci. (Paris) 261, 3895–3898 (1965).Google Scholar
  42. [42]
    Cazal, P., L. Joly, and A. Porte: Étude ultrastructurelle des corpora cardiaca et de quelques formations annexes chez Locusta migratoria L. Z. Zellforsch. 114, 61–72 (1971).Google Scholar
  43. [43]
    Chadwick, L. E.: Removal of prothoracic glands from the nymphal cockroach. J. Exp. Zool. 131, 291–305 (1956).Google Scholar
  44. [44]
    Chalaye, D.: La tréhalosémie et sous controle neuroendocrine chez le criquet migrateur, Locusta migratoria migratoroides. 2. Role des corpora cardiaca et des organes périsympathiques. C. R. Acad. Sci. (Paris) 268, 3111–3114 (1969).Google Scholar
  45. [45]
    Chudakova, I. V., and O. M. Bocharova-Messner: Endocrino regulation of the condition of the wing musculature in the imago of the house cricket (Acheta domestica L.) Proc. Acad. Sci. U.S.S.R. 179, 157–159 (1968).Google Scholar
  46. [46]
    Church, N. S.: Hormones and the termination of reproduction and diapause in Cephus cinctus Nort. Canad. J. Zool. 33, 339–369 (1955).Google Scholar
  47. [47]
    Claree, K. U., and R. W. Baldwin: The effect of insect hormones and of 2,4-dinitrophenol on the mitochondrion of Locusta migratoria L. J. Insect Physiol. 5, 37–46 (1960).Google Scholar
  48. [48]
    Coles, G. C.: Some effects of decapitation on metabolism in Rhodnius prolixus Stål. Nature (London) 203, 323 (1964).Google Scholar
  49. [49]
    Coles, G. C.: Studies on the hormonal control of metabolism in Rhodnius prolixus Stål. I. The adult female. J. Insect Physiol. 11, 1325–1330 (1965).Google Scholar
  50. [50]
    Cottrel, C. B.: The imaginal ecdysis in blowflies. Detection of the blood-borne darkening factor and determination of some of its properties. J. Exp. Biol. 39, 431–448 (1962).Google Scholar
  51. [51]
    Davey, K. G.: Substances controlling the rate of beating of the heart of Periplaneta. Nature (London) 192, 284 (1961).Google Scholar
  52. [52]
    Davey, K. G.: Changes in the pericardial cells of Periplaneta americana induced by exposure to homogenates of the corpus cardiacum. Quart. J. Microscop. Sci. 103, 349–358 (1962).Google Scholar
  53. [53]
    Davey, K. G.: The release by feeding of a pharmacologically active factor from the corpus cardiacum of Periplaneta americana. J. Insect Physiol. 8, 205–208 (1962).Google Scholar
  54. [54]
    Dejmal, R. G., and V. J. Brookes: Solubility and electrophoretic properties of ovarial protein of the cockroach Leucophaea maderae. J. Insect Physiol. 14, 371–381 (1968).Google Scholar
  55. [55]
    Delépine, V.: Recherches sur la neurosécrétion dans l’ensemble du systéme nerveux central d’un Lépidoptére Galleria mellonella. Bull. Soc. Zool. France 90, 525–540 (1965).Google Scholar
  56. [56]
    Doane, W. W.: Effect of implanted adult corpora allata on that of host in two species of Drosophila. Science 134, 838–839 (1961).PubMedGoogle Scholar
  57. [57]
    Doane, W. W.: Endocrino control of reproduction. Insect Physiology. 23rd Biol. Congr. Oregon State University Press, pp. 65–88 (1962).Google Scholar
  58. [58]
    Dubovský, J.: Molekulární endokrinologie, pp. 1–235. Praha: Státní Zdravotnické Nakladatelstvi. 1968.Google Scholar
  59. [59]
    Edwards, F. J.: Endocrinecontrol of flight muscle histolysis in Dysdercus intermedius. J. Insect Physiol. 16, 2027–2031 (1970).PubMedGoogle Scholar
  60. [60]
    El-Ibrashy, M. T.: A comparative study of metabolic effects of the corpus allatum in two adult Coleoptera, in relation to diapause. Meded. Landbouwhogeschool Wageningen 65, 1–65 (1965).Google Scholar
  61. [61]
    Ellis, P. E., and D. B. Carlisle: The prothoracic gland and colour change in Locusts. Nature (London) 190, 368–369 (1961).Google Scholar
  62. [62]
    Ellis, P. E., and V. J. A. Novák: Metamorphosis hormones and phase dimorphism in Schistocerca gregaria. Endocrinol. exp. 5, 13–18 (1971).PubMedGoogle Scholar
  63. [63]
    Enders, E.: Die hormonale Steuerung rhythmischer Bewegungen von Insekten-Ovidukten. Zool. Anz. suppl. 19, 113–116 (1956).Google Scholar
  64. [64]
    Engelmann, F.: Über die Einwirknng implantierter Prothoraxdrüsen im adulten Weibchen von Leucophaea maderae (Blattaria). Z. Vergl. Physiol. 41, 456–470 (1959).Google Scholar
  65. [65]
    Engelmann, F.: Hormonal control of mating behaviour in an insect. Experientia 16, 69–70 (1960).PubMedGoogle Scholar
  66. [66]
    Engelmann, F.: The mode of regulation of the corpus allatum in adult insects. Arch. Anat. Microscop. 54, 387–404 (1965).Google Scholar
  67. [67]
    Engelmann, F.: Endocrine control of reproduction in insects. Annu. Rev. Entomol. 13, 1–26 (1968).Google Scholar
  68. [68]
    Engelmann, F.: Food-stimulated synthesis of intestinal protoeolytic enzymes in the cockroach Leucophaea maderae. J. Insect. Physiol. 15, 217–235 (1969).PubMedGoogle Scholar
  69. [69]
    Engelmann, F.: Female specific proteins: Biosynthesis controled by corpus allatum in Leucophaea maderae. Science 165, 407–409 (1969).PubMedGoogle Scholar
  70. [70]
    Engelmann, F.: The Physiology of Insect Reproduction, 307 pp. Pergamon Press Inc. 1970.Google Scholar
  71. [71]
    Engelmann, F., and R. H. Barth, Jr.: Endocrine control of female receptivity in Leucophaea maderae (Blattaria). Ann. Ent. Soc. Amer. 61, 503–505 (1968).Google Scholar
  72. [72]
    Engelmann, F., and H. P. Mueller: Fat body respiration as influenced by previously isolated corpora cardiaca. Naturwissenschaften 53, 388–389 (1966).Google Scholar
  73. [73]
    Engelmann, F., and D. Penney: Studies on the endocrine control of metabolism in Leucophaea maderae (Blattaria). I. The haemolymph proteins during egg maturation. Gen. Comp. Endocrinol. 7, 314–325 (1966).Google Scholar
  74. [74]
    Fain-Maurel, M. A., and P. Cassier: Role de l’appareil de Golgi dans l’involution des glandes de mue du criquet migrateur (Locusta migratoria migratoroides R. et F.). IVth Europ. Reg. Conf. Electron Microscop. Rome, p. 233 (1968).Google Scholar
  75. [75]
    Fajal, W., and G. Fraenkel: The role of bursicon in melanization and endocuticule formation in the adult fleshfly, Sarcophaga bullata. J. Insect Physiol. 15, 1235–1247 (1969).Google Scholar
  76. [76]
    Fraenkel, G.: Puparium of flies initiated by a hormone. Nature (London) 133, 834 (1934).Google Scholar
  77. [77]
    Fraenkel, G., and C. Hsiao: Tanning in the adult fly: a new function of neurosecretion in the brain. Science 141, 1057–1058 (1963).PubMedGoogle Scholar
  78. [78]
    Fraenkel, G., and C. Hsiao: Bursicon, a hormone which mediates tanning of the cuticle in the adult fly and other insects. J. Insect Physiol. 11, 513–556 (1965).Google Scholar
  79. [79]
    Fraenkel, G., C. Hsiao, and M. Seligman: Properties of bursicon: An insect protein hormone that controls cuticular tanning. Science 151, 553–561 (1969).Google Scholar
  80. [80]
    Fréon, G.: Contribution a l’étude de la neurosécrétion dans la chaîne nerveuse ventrale du criquet migrateur, Locusta migratoria L. Bull. Soc. Zool. France 89, 819–830 (1964).Google Scholar
  81. [81]
    Fukaya, M., and J. Mitsithashi: The hormonal control of larval diapause in the rice stem borer, Chilo suppresalis. II. The activity of the corpora allata during the diapause. Jap. J. Appl. Zool. 2, 223–226 (1958).Google Scholar
  82. [82]
    Fukuda, S.: Role of the prothoracic glands in differentiation of the imaginal character in the silkworm pupae. Annot. Zool. Jap. 20, 9–13 (1941).Google Scholar
  83. [83]
    Fukuda, S.: The hormonal mechanism of larval molting and metamorphosis in the silkworm. J. Fac. Sci. Tokyo Univ. 6, 477–537 (1944).Google Scholar
  84. [84]
    Fukuda, S.: Secretion of juvenile hormone by the corpora allata in pupae and moths of the silkworm, Bombyx mori. Annot. Zool. Jap. 35, 199–212 (1962).Google Scholar
  85. [85]
    Fukuda, S., G. Eguchi, and S. Takeuchi: Histological and electron microscopical studies on sexual differences in structure of the corpora allata of the moth of the silkworm, Bombyx mori. Embryologia 9, 123–158 (1966).PubMedGoogle Scholar
  86. [86]
    Fukuda, S., and K. Endo: Hormonal control of the development of seasonal forms in the butterfly, Polygonia c-aureum L. Proc. Jap. Acad. 42, 1082–1087 (1966).Google Scholar
  87. [87]
    Fukuda, S., and S. Takeuchi: Studies on the diapause factor-producing cells in the subeosophageal ganglion of the silkworm, Bombyx mori. Embryologia 9, 333–353 (1967).PubMedGoogle Scholar
  88. [88]
    Gabe, M.: Neurosecretion. Internat. Ser. Monogr. Biol. 28, 872 pp. Oxford-London-New York: Pergamon Press Inc. 1966.Google Scholar
  89. [89]
    Gersch, M.: Insect metamorphosis and the activation hormone. Am. Zoologist 1, 53–57 (1961).Google Scholar
  90. [90]
    Gersch, M.: Vergleichende Endokrinologie der wirbellosen Tiere, 535 pp. Leipzig: Akademische Verlagsgesellschaft, Geest & Portig K.-G. 1964.Google Scholar
  91. [91]
    Gersch, M.: Experimentelle Untersuchungen zur endokrinen Regulation des Wasserhaushaltes der Larve von Corethra (Chaoborus). Zool. Jb. Physiol. 75, 1–16 (1969).Google Scholar
  92. [92]
    Gersch, M.: Generelle Probleme der Neuroendokrinologie wirbelloser Tiere. Biol. Rundschau 8, 77–90 (1970).Google Scholar
  93. [93]
    Gersch, M., F. Fischer, H. Unger, and W. Kapitza: Vorkommen von Serotonin im Nervensystem von Periplaneta americana. L. (Insecta). Z. Naturforseh. 166, 351–352 (1961).Google Scholar
  94. [94]
    Gersch, M., F. Fischer, H. Unger, and H. Koch: Die Isolierung neurohormonaler Faktoren aus dem Nervensystem der Küchenschabe Periplaneta americana. Z. Naturforsch. 15 b, 319–322 (1960).Google Scholar
  95. [95]
    Gersch, M., K. Richter, G.-A. Böhm, and J. Stürzebecher: Selektive Ausschüttung von Neurohormonen nach elektrischer Reizung der Corpora Cardiaca von Periplaneta americana in vitro. J. Insect Physiol. 16, 1991–2013 (1970).Google Scholar
  96. [96]
    Gersch, M., K. Richter, J. Stürzebecher, and B. Fabian: Experimentelle Untersuchungen zum Wirkungsmechanismus des Neurohormons D von Periplaneta americana (L.) am „biologischen Modell“ der Harnblase von Bufo bufo (L.). Gen. Comp. Endocrinol. 12, 40–50 (1969).PubMedGoogle Scholar
  97. [97]
    Gersch, M., and J. Stürzebecher: Weitere Untersuchungen zur Kennzeichnung des Aktivationshormons der Insektenhäutung. J. Insect Physiol. 14, 87–96 (1968).Google Scholar
  98. [98]
    Gersch, M., and J. Stürzebecher: Experimentelle Stimulierung der zellulären Aktivität der Prothorakaldrüsen von Periplaneta americana durch den Aktivationsfaktor. J. Insect Physiol. 16, 1813–1826 (1970).Google Scholar
  99. [99]
    Gilbert, L. I.: Physiology of growth and development. Endocrine aspects. In: Rockstein, M., ed.: Physiology of Insects, pp. 198–263. New York: Academie Press. 1964.Google Scholar
  100. [100]
    Gilbert, L. I.: The chemistry of insect hormones. Progress in Endocrinology, Excerpta Med. Int. Congr. Ser. 184, 340–346 (1968).Google Scholar
  101. [101]
    Gilbert, L. I., and H. A. Schneidermann: Some biochemical aspects of insect metamorphosis. Am. Zoologist 1, 11–51 (1961).Google Scholar
  102. [102]
    Gilbert, L. I., and H. A. Schneidermann: The content of juvenile hormone and lipid in Lepidoptera: sexual differences and developmental changes. Gen. Comp. Endocrinol. 1, 453–472 (1961).PubMedGoogle Scholar
  103. [103]
    Gibardie, A.: Contribution à l’étude du contrôle de l’activité des corpora allata par le pars intercerebralis chez Locusta migratoria L. C. R. Séanc. Acad. Sci. (Paris) (0) 261, 4876–4878 (1965).Google Scholar
  104. [104]
    Gibardie, A.: Controle de l’activité génitale chez Locusta migratoria. Mise en évidence d’un facteur gonadotrope et d’un facteur allatotrope dans la pars intercerebralis. Bull. Soc. Zool. France 91, 423–424 (1966).Google Scholar
  105. [105]
    Gibardie, A.: Mise en évidence, dans la protocérébron de cellules neurosécrétrices contrôlant le métabolisme hydrique. C. R. Acad. Sci. (Paris) 271, 504–507 (1970).Google Scholar
  106. [106]
    Gibardie, A.: Neurosécrétions cérébrales chez les Acridiens. Bull. Soc. Zool. France 95, 783–802 (1970).Google Scholar
  107. [107]
    Girardie, A., and M. Cazal: Rôle de la pars intercerebralis et des corpora cardiaca sur la mélanisation chez Locusta migratoria (L). C. R. Acad. Sci. (Paris) 261, 4525–4527 (1965).Google Scholar
  108. [108]
    Girardie, A., and J. Girardie: Étude histologique, histochimique et ultrastructurale de la pars intercerebralis chez Locusta migratoria L. (Orthoptére). Z. Zellforsch. 78, 54–75 (1967).PubMedGoogle Scholar
  109. [109]
    Gnatzy, W.: Struktur und Entwicklung des Integuments und der Oenocyten von Culex pipiens L. (Dipt.). Z. Zellforsch. 110, 401–443 (1970).PubMedGoogle Scholar
  110. [110]
    Grillot, J.-P.: Recherches sur la localisation et la structure des organes neurohémaux métamériques associés à la chaine nerveuse ventrale chez les Coléoptéres. C. R. Acad. Sci. (Paris) 270, 847–850 (1970).Google Scholar
  111. [111]
    Hachlow, W.: Zur Entwicklungsmechanik der Schmetterlinge. Arch. Entw. Mech. Org. 125, 26–49 (1931).Google Scholar
  112. [112]
    Handel, E. Van, and A. O. Lea: Medial neurosecretory cells as regulators of glycogen and triglyceride synthesis. Science 149, 298–300 (1965).PubMedGoogle Scholar
  113. [113]
    Harker, J. E.: Internal factors controlling the suboesophageal ganglion neurosecretory cycle in Periplaneta americana L. J. Exp. Biol. 37, 164–170 (1960).Google Scholar
  114. [114]
    Harvey, W. R., and C. M. Williams: The injury metabolism of the cecropia silkworm. I. Biological amplification of the effects of localized injury. J. Insect Physiol. 7, 81–99 (1961).Google Scholar
  115. [115]
    Hasegawa, K.: The diapause hormone of the silkworm, Bombyx mori. Nature (London) 179, 1300–1301 (1957).Google Scholar
  116. [116]
    Hasegawa, K.: Studies on the mode of action of the diapause hormone in the silkworm, Bombyx mori. I. The action of diapause hormone injeeted into pupae of different ages. J. Exp. Biol. 40, 517–529 (1963).Google Scholar
  117. [117]
    Hasegawa, K., and O. Yamashita: Mode d’aetion de l’hormone de diapause dans l’métabolisme glucidique du Ver à soie Bombyx mori L. Ann. Endocrinol. (Paris) 31, 631–636 (1970).Google Scholar
  118. [118]
    Herman, W. S., and L. I. Gilbert: The neuroendocrine system of Hyalophora cecropia (L.). (Lepidoptera: Saturniidae). I. The anatomy and histology of the eedysial glands. Gen. Comp. Endocrinol. 7, 291 (1966).Google Scholar
  119. [119]
    Highnam, K. C.: Activity of the corpora allata during pupal diapause in Mimas tiliae (Lepidoptera). Quart. J. Micr. Sci 99, 171–180 (1958).Google Scholar
  120. [120]
    Highnam, K. C.: Neurosecretory control of ovarian development in Schistocerca gregaria, and its relation to phase differences. Coll. Int. Centr. Natn. Reeh. Scient. 114, 107–121 (1962).Google Scholar
  121. [121]
    Highnam, K. C.: Endocrino relationships in insect reproduction. In: Highnam, K. C, ed.: Insect Reproduction. Roy. Entomol. Soc. London Symp. 2, 26–42 (1964).Google Scholar
  122. [122]
    Highnam, K. C.: Insect Hormones. J. Endocrinol. 39, 123–150 (1967).PubMedGoogle Scholar
  123. [123]
    Highnam, K. C.: Neurosecretion in Insects. Progress in Endocrinology. Excerpta Medica International Congress Series 184, 351–355 (1968).Google Scholar
  124. [124]
    Highnam, K. C.: Estimates of neurosecretory activity during maturation in female locusts. Insect Endocrines. Academia Praha 1971, 81–90.Google Scholar
  125. [125]
    Highnam, K. C., and L. Hill: The role of the corpora allata during oöcyte growth in the desert locust, Schistocerca gregaria Forsk. J. Insect Physiol. 9, 587–596 (1963).Google Scholar
  126. [126]
    Highnam, K. C, and L. Hill: The Comparative Endocrinology of the Invertebrates. Contemporary Biology, 270 pp. London: Edward Arnold Ltd. 1969.Google Scholar
  127. [127]
    Hill, L.: Neurosecretory control of haemolymph protein concentration during ovarian development in the desert locust. J. Insect Physiol. 8, 609–619 (1962).Google Scholar
  128. [128]
    Hill, L.: Endocrine control of protein synthesis in female desert locusts (Schistocerca gregaria). J. Endocrinol. 26, 17–18 (1963).Google Scholar
  129. [129]
    Hill, L.: The incorporation of C14-glycine into the proteins of the fat body of the desert locust during ovarian development. J. Insect Physiol. 11, 1605–1615 (1965).Google Scholar
  130. [130]
    Hinton, H. E.: Metamorphosis of the epidermis and hormone mimetic substances. Sci. Progress 51, 306–322 (1963).Google Scholar
  131. [131]
    Holman, G. M., and B. J. Cook: Pharmacological properties of excitatory neuromuscular transmission in the hindgut of the cockroach, Leucophaea maderae. J. Insect Physiol. 16, 1891–1907 (1970).Google Scholar
  132. [132]
    Hrubešová, H., and K. Sláma: The effect of hormones on the intestinal proteinase activity of adult Pyrrhocoris apterus L. (Hemiptera). Acta entom. bohemoslov. 64, 175–183 (1967).Google Scholar
  133. [133]
    Ichikawa, M., and H. Ishizaki: Brain hormone of the silkworm, Bombyx mori. Nature (London) 191, 933–934 (1961).Google Scholar
  134. [134]
    Ichikawa, M., and H. Ishizaki: Protein nature of the brain hormone of insects. Nature (London) 198, 308–309 (1963).Google Scholar
  135. [135]
    Ilan, J., J. Ilan, and N. Patel: Mechanism of gene expression in Tenebrio molitor. J. Biol. Chem. 245, 1275–1281 (1970).PubMedGoogle Scholar
  136. [136]
    Ishizaki, E.L., and M. Ichikawa: Purification of the brain hormone of the silkworm Bombyx mori. Biol. Bull. Woods Hole 133, 355–368 (1967).Google Scholar
  137. [137]
    Janda, V., Jr., and P. Krieg: Proteolytische Aktivität des Mitteldarms von Galleria mellonella in Zusammenhang mit Wachstum und Metamorphose. Z. vergl. Physiol. 64, 288–300 (1969).Google Scholar
  138. [138]
    Janda, V., Jr., and F. Sehnal: The influenee of juvenile hormone on glycogen, fat and nitrogen metabolism in Galleria mellonella L. Endocrinol. exp. 5, 79–83 (1971).Google Scholar
  139. [139]
    Jarda V., Jr., and K. Sláma: Über den Einfluß von Hormonen auf den Glykogen-, Fett- und Stickstoffmetabolismus bei den Imagines von Pyrrhocoris apterus L. (Hemiptera). Zool. Jb. Physiol. 71, 345–358 (1965).Google Scholar
  140. [140]
    Johansson, A. S.: Relation of nutrition to endocrine-reproductive functions in the milkweed bug Oncopeltus fasciatus (Dallas) (Heteroptera: Lygaeidae). Nytt Mag. Zool. 7, 1–132 (1958).Google Scholar
  141. [141]
    Johnson, B.: A histological study of neurosecretion in aphids. J. Inseet Physiol. 9, 727–739 (1963).Google Scholar
  142. [142]
    Joly, L.: Aetion de l’implantation de glandes ventrales sur l’aetivité génitale des imagos de Locusta migratoria L. C. R. Aead. Sci. (Paris) 272, 2326–2329 (1971).Google Scholar
  143. [143]
    Joly, P.: Les corrélations humorales ehez les insectes. Année biol. 21, 1–34 (1945).Google Scholar
  144. [144]
    Joly, P.: Déterminisme de la pigmentation chez Acria turrita. C. R. Acad. Sci. (Paris) 235, 1054–1056 (1952).Google Scholar
  145. [145]
    Joly, P.: Role joué per les corpora allata dans la realisation du polymorphisme de phase ehez Locusta migratoria. Coll. Int. Centr. Natn. Rech. Scient. 114, 77–88 (1962).Google Scholar
  146. [146]
    Joly, P.: Comparison du volume et de l’activité physiologique des corpora allata de Locusta migratoria L. Ann. Soc. Entona. France 3, 601–608 (1967).Google Scholar
  147. [147]
    Joly, P., and M. Cazal: Donnée récentes sur les corpora cardiaca. Bull. Soc. Zool. France 94, 181–194 (1969).Google Scholar
  148. [148]
    Joly, P., and L. Joly: Comparison des tests cytologiques d’activité des corpora allata des Acridiens. C. R. Acad. Sci. (Paris) 270, 2560–2562 (1970).Google Scholar
  149. [149]
    Joly, P., L. Joly, and A. Porte: Remarques sur l’ultrastructure de la glande ventrale de Locusta migratoria L. (Orthoptére) en population dense. C. R. Acad. Sci. (Paris) 269, 917–918 (1969).Google Scholar
  150. [150]
    Joly, P., L. Joly, A. Porte, and A. Girardie: Analyse ultrastructurale de l’aetivité des corpora allata de Locusta migratoria L. et ses conséquences sur la structure que l’on doit attributer au mécanisme humoral controlant la métamorphose. Arch. Zool. exptl. gén. 110, 617–628 (1969).Google Scholar
  151. [151]
    Joly, P., L. Joly, and C. Riotte: La métamorphose des organes du vol chez Locusta migratoria L. C. R. 86. Congr. Soc. Savantes Paris (Sec. Sci. Montpellier), pp. 725–733 (1962).Google Scholar
  152. [152]
    Joly, P., A. Porte, and A. Girardie: Caractéres ultrastructuraux des corpora allata actifs et inactifs ehez Locusta migratoria. C. R. Acad. Sci. (Paris) 265, 1633–1635 (1967).Google Scholar
  153. [153]
    Jones, J. C.: Effects of salts on Anopheles heart rates. J. Exp. Zool. 133, 125–144 (1956).Google Scholar
  154. [154]
    Kaiser, P.: Histologische Untersuchungen über die Corpora allata und Prothoraxdrüsen der Lepidopteren in bezug auf ihre Funktion. Arch. Entw. Mech. Org. 144, 99–131 (1949).Google Scholar
  155. [155]
    Karlinsky, A.: Effects de l’ablation des corpora allata imaginaux sur le développement ovarien de Pieris brassicae L. (Lépidoptére). C. R. Acad. Sci. (Paris) 256, 4101–4103 (1963).Google Scholar
  156. [156]
    Karlinsky, A.: Reprise de la vitellogénèse aprés implantation de corpora allata chez Pieris brassicae L. (Lépidoptére). C. R. Acad. Sci. (Paris) 264, 1735–1738 (1967).Google Scholar
  157. [157]
    Keely, L. L., and S. Friedman: Corpus cardiacum as a metabolic regulator in Blaberus discoidalis Serville (Blattidae). I. Long-term effects of cardiacectomy on whole body and tissue respiration and on trophic metabolism. Gen. Comp. Endocrinol. 8, 129–134 (1967).Google Scholar
  158. [158]
    Keely, L. L., and H. Van Waddill: Insect hormones: evidence for a neuroendocrine factor affecting respiratory metabolism. Life Sciences 10, 737–745 (1971).Google Scholar
  159. [159]
    King, R. C., S. K. Aggarwal, and D. Bodenstein: The comparative submicroscopic cytology of the corpus allatum-corpus cardiacum complex of wild type and fes adult female Drosophila melanogaster. J. Exp. Zool. 161, 151–176 (1966).Google Scholar
  160. [160]
    King, R. C., S. K. Aggarwal, and D. Bodenstein: The comparative submicroscopic morphology of the ring gland of Drosophila melanogaster during the second and third larval instars. Z. Zellforsch. 73, 272–285 (1966).PubMedGoogle Scholar
  161. [161]
    Kloot, W. G. Van Der: Neurosecretion in insects. Annu. Rev. Entomol. 5, 35–52 (1960).Google Scholar
  162. [162]
    Kobayashi, M.: The chemistry and physiology of the brain hormone. Proc. XVIth Int. Congr. Zool. Washington 4, 226–233 (1963).Google Scholar
  163. [163]
    Kobayashi, M., Y. Ishitoya, and M. Yamazaki: Action of proteinic brain hormone to the prothoracic gland in an insect, Bombyx mori L. (Lepidoptera: Bombycidae). Appl. Entomol. Zool. 3, 150–152 (1968).Google Scholar
  164. [164]
    Kobayashi, M., S. Kimura, and M. Yamazaki: Action of insect hormones on the fate of C14-glucose in the diapausing, brainless pupa of Samia cynthia pyeri (Lepidoptera: Saturniidae). Appl. Entomol. Zool. 2, 79–84 (1967).Google Scholar
  165. [165]
    Kobayashi, M., and J. Kirimura: The “brain” hormone in the silkworm, Bombyx mori L. Nature (London) 181, 1217 (1958).Google Scholar
  166. [166]
    Kobayashi, M., J. Kirimura, and M. Saito: The “brain” hormone in an insect, Bombyx mori L. Mushi 36, 85–92 (1962).Google Scholar
  167. [167]
    Kobayashi, M., M. Saito, Y. Ishitoya, and N. Ikekawa: Brain hormone activity in Bombyx mori of sterols and physiologically vital active substances. Proc. Soc. Exp. Biol. Med. 114, 316–318 (1963).PubMedGoogle Scholar
  168. [168]
    Kobayashi, M., and Y. Yamashita: A function of corpus allatum in neurosecretory system in the silkworm, Bombyx mori. J. Sericult. Sci. Japan 28, 335–339 (1959).Google Scholar
  169. [169]
    Kobayashi, M., and M. Yamazaki: The proteinic brain hormone in an insect Bombyx mori L. (Lepidoptera: Bombycidae). Appl. Entomol. Zool. 1, 53–60 (1966).Google Scholar
  170. [170]
    Koller, G.: Rhythmische Bewegung und hormonale Steuerung bei den malpighischen Gefäßen der Insekten. Biol. Zbl. 67, 201–211 (1948).Google Scholar
  171. [171]
    Kopeč, S.: Über die Funktionen des Nervensystems der Schmetterlinge während der successiven Stadien der Metamorphose. Zool. Anz. 40, 353–360 (1912).Google Scholar
  172. [172]
    Kopec, S.: Studies on the necessity of the brain for the inception of insect metamorphosis. Biol. Bull. Woods Hole 42, 323–342 (1922).Google Scholar
  173. [173]
    Kort, C. A. D. DE: Hormones and the structural and biochemical properties of the flight muscles in the colorado beetle. Meded. Land-bouwhogeschool Wageningen 69, 1–63 (1969).Google Scholar
  174. [174]
    Krishnakumaran, A., S. J. Berry, H. Oberlander, and H. A. Schneidermann: Nucleic acid syntheses during inseet development. II. Control of DNA synthesis in the eecropia silkworm and other saturniid moths. J. Insect Physiol. 13, 1–57 (1967).Google Scholar
  175. [175]
    Krishnakumaran, A., H. Oberlander, and H. A. Schneidermann: Rates of DNA and RNA synthesis in various tissues during a larval moult cycle of Samia cynthia ricini (Lepidoptera). Biol. Bull. Woods Hole 125, 576–581 (1963).Google Scholar
  176. [176]
    Krishnakumaran, A., and H. A. Schneidermann: Developmental capacities of the cells of an adult moth. J. Exp. Zool. 157, 293–306 (1964).PubMedGoogle Scholar
  177. [177]
    Kühn, A., and H. Piepho: Über hormonale Wirkungen bei der Verpuppung der Sehmetterlinge. Nachr. Ges. Wiss. (Göttingen) 2, 141–154 (1936).Google Scholar
  178. [178]
    Lamb, K. P., and D. F. White: Endoerine aspeets of alary polymorphism in Brevicoryne brassicae L. Endocrinol. Exp. 5, 19–22 (1971).Google Scholar
  179. [179]
    Larsen, J. R., and D. Bodenstein: The humoral control of egg maturation in the mosquito. J. Exp. Zool. 140, 343–382 (1959).PubMedGoogle Scholar
  180. [180]
    Lea, A. O.: Egg maturation in mosquitoes not regulated by the corpora allata. J. Inseet Physiol. 15, 537–541 (1969).Google Scholar
  181. [181]
    Lea, A. O.: Size independent secretion by the corpus allatum of Calliphora erythrocephala. J. Inseet. Physiol. 15, 477–482 (1969).Google Scholar
  182. [182]
    Lees, A. D.: The physiology of diapause in arthropods, I–II. Cambridge University Press. 1955.Google Scholar
  183. [183]
    Lees, A. D.: The physiology and biochemistry of diapause. Annu. Rev. Entomol. 1, 1–16 (1956).Google Scholar
  184. [184]
    Lefeuvre, J. C.: On the precocious determination of cockroaches wing pads. Endocrinol. exp. 5, 29–33 (1971).Google Scholar
  185. [185]
    Legay, J. M.: Note sur l’évolution des corpora allata au cours de la vie larvaire de Bombyx mori. C. R. Soc. Biol. (Paris) 144, 512–513 (1950).Google Scholar
  186. [186]
    L’hélias, C.: Étude du métabolisme basal chez le phasme Dixippus morosus après ablation des corpora allata. C. R. Acad. Sci. (Paris) 239, 778–780 (1954).Google Scholar
  187. [187]
    L’hélias, C.: Variation des métabolismes glucidique, azote et lipidique après ablation des corpora allata chez le phasme Dixippus morosus (Br.) Physiol. Comp. Oecol. 4, 74–88 (1955).Google Scholar
  188. [188]
    L’hélias, C.: Biochimie de la métamorphose et role du complexe rétrocérébral chez les insectes. Acta Soc. Linn. (Bordeaux) 97, 1–11 (1957).Google Scholar
  189. [189]
    L’hélias, C.: Le role des ptérines dans le mécanisme hormonal du complexe rétrocérébral chez les insectes. 2nd Int. Symp. Neurosecret. Lund 1957, 91–95.Google Scholar
  190. [190]
    L’hélias, C: Aspects chimiques des mécanismes endocriniens chez les inseetes. Ann. Biol. 3, 1–31 (1964).Google Scholar
  191. [191]
    Locke, M.: The ultrastructure of the oenocytes in the molt/intermolt cycle of an insect. Tissue and Cell 1, 103–154 (1969).PubMedGoogle Scholar
  192. [192]
    Loher, W.: The chemical aeceleration of the maturation process and its hormonal control in the male of the desert locust. Proc. Roy. Soc. (London) B 153, 380–397 (1960).Google Scholar
  193. [193]
    Loher, W.: Die Kontrolle des Weibchengesanges von Gomphocerus rufus L., Acridinae durch die corpora allata. Naturwissenschaften 49, 406–409 (1962).Google Scholar
  194. [194]
    Loher, W., and F. Huber: Nervous and endocrine control of sexual behaviour in a grasshopper (Gomphocerus rufus L., Acridinae). Symp. Soc. Exp. Biol. 20, 381–400 (1966).PubMedGoogle Scholar
  195. [195]
    Loof, A. De, and J. De Wilde: The relations between haemolymph proteins and vitellogenesis in the colorado beetle Leptinotarsa decemlineata. J. Insect Physiol. 16, 157–169 (1970).Google Scholar
  196. [196]
    Lukoschus, F.: Über die Prothoraxdrüse der Honigbiene (Apis mellifica L.). Naturwissenschaften 5, 116 (1952).Google Scholar
  197. [197]
    Lüscher, M.: Hormonal control of caste differentiation in termites. Ann. N. Y. Acad. Sci. 89, 549–563 (1960).Google Scholar
  198. [198]
    Lüscher, M.: Hormonal control of respiration and protein synthesis in the fat body of the cockroach Nauphoeta cinerea during oöcyte growth. J. Insect Physiol. 14, 499–511 (1968).PubMedGoogle Scholar
  199. [199]
    Lüscher, M., and F. Engelmann: Histologische und Experimentelle Untersuchungen über die Auslösung der Metamorphose bei Leucophaea maderae (Orthoptera). J. Insect Physiol. 5, 240–258 (1960).Google Scholar
  200. [200]
    Lüscher, M., and H. Leuthold: Über die Hormonale Beeinflussung des respiratorischen Stoffwechsels bei der Schabe Leucophaea maderae (F.). Rev. Suisse Zool. 72, 618–622 (1965).Google Scholar
  201. [201]
    Lüccher, M., and M. Wyss-Huber: Die Adenosin-Nukleotide im Fettkörper des adulten Weibchens von Leucophaea maderae im Laufe des Sexualzyklus. Rev. Suisse Zool. 71, 183–194 (1964).Google Scholar
  202. [202]
    Maddrell, S. H. P.: Excretion in the blood sucking bug, Rhodnius prolixus Stål. I. The control of diuresis. J. Exp. Biol. 40, 247–256 (1963).Google Scholar
  203. [203]
    Maddrell, S. H. P.: The site of release of the diuretic hormone in Rhodnius–a new neurohaemal system in insects. J. Exp. Biol. 45, 499–508 (1966).Google Scholar
  204. [204]
    Meola, R., and A. O. Lea: Interdependence of paraldehyde-fuchsine staining of the corpus cardiacum and the presence of the neurosecretory hormone required for egg development in the mosquito. Gen. Comp. Endocrinol. 16, 105–111 (1971).PubMedGoogle Scholar
  205. [205]
    Mills, R. R., S. Androuny, and R. R. Fox: Correlation of phenoloxidase activity with ecdysis and tanning hormone release in the american cockroach. J. Insect Physiol. 14, 603–611 (1968).Google Scholar
  206. [206]
    Mills, R. R., and D. J. Nielsen: Hormonal control of tanning in the american cockroach-V. Some properties of the purified hormone. J. Insect Physiol. 13, 273–280 (1967).Google Scholar
  207. [207]
    Mills, R. R., and D. L. Whitehead: Hormonal control of tanning in the american cockroach: changes in blood cell permeability during ecdysis. J. Insect Physiol. 16, 331–340 (1970).Google Scholar
  208. [208]
    Minks, A. K.: Biochemical aspects of juvenile hormone action in the adult Locusta migratoria. Archs. Neerl. Zool. 17, 175–258 (1967).Google Scholar
  209. [209]
    Mordue, W.: The hormonal control of excretion and water balance in Locusts. Endocrinol. exp. 5, 79–83 (1971).PubMedGoogle Scholar
  210. [210]
    Nair, K. M.: The localization of ribonucleic acid and hormone production in the corpus allatum of Chrysocornis purpureus (Westw.). J. Histochem. Cytochem. 11, 495–499 (1963).Google Scholar
  211. [211]
    Natalizi, G., and N. Frontali: Purification of insect hyperglycaemic and heart accelerating hormones. J. Insect. Physiol. 12, 1279–1287 (1966).Google Scholar
  212. [212]
    Natalizi, G., M. Pansa, V. D’ajello, O. Casaglia, S. Bettini, and N. Frontali: Physiologically active factors from corpora cardiaca of Periplaneta americana. J. Insect Physiol. 16, 1827–1836 (1970).Google Scholar
  213. [213]
    Nayar, K. K.: Water content and release of neurosecretory products in Iphita limbata Stal. Current Sci. 26, 25 (1957).Google Scholar
  214. [214]
    Němec, V., K. Sláma, and H. Hrubešová: The effect of hormones on the intestinal proteinase activity of adult Pyrrhocoris apterus L. (Hemiptera). Acta entomol. bohemoslov. 64, 175–183 (1967).Google Scholar
  215. [215]
    Nishiitsutsuji-Uwo, J.: An insect brain hormone-activity from mammalian tissues. Botyu-Kagaku 36, 66–77 (1971).Google Scholar
  216. [216]
    Nohel, P., and K. Sláma: Effect of a juvenile hormone analogue on glutamate-pyruvate transaminase in the bug Pyrrhocoris apterus. Insect Biochem. 2, 58–66 (1972).Google Scholar
  217. [217]
    Novák, V. J. A.: The growth of the corpora allata during the postembryonal development in insects. Acta Soc. Zool. Čsl. 18, 98–133 (1954).Google Scholar
  218. [218]
    Novák, V. J. A.: Insect Hormones, 478 pp. London: Methuen & Co. Ltd. 1966.Google Scholar
  219. [219]
    Novák, V. J. A.: Hormonal control of the molting process in Arthropods. Gen. Comp. Endocrinol., suppl. 2, 439–450 (1969).Google Scholar
  220. [220]
    Novák, V. J. A., and K. Sláma: The influence of juvenile hormone on the oxygen consumption of the last larval instar of Pyrrhocoris apterus L. J. Insect Physiol. 8, 145–153 (1962).Google Scholar
  221. [221]
    Novák, V. J. A., K. Sláma, and K. Wenig: Influence of implantation of corpus allatum on oxygen consumption of Pyrrhocoris apterus. Acta Symp. Evol. Insects (Prague) 1959, 147–153.Google Scholar
  222. [222]
    Oberlander, H., S. J. Berry, A. Krishnakumaran, and H. A. Schneidermann: UNA and DNA synthesis during activation and secretion of the prothoracic glands of saturniid moths. J. Exp. Zool. 159, 15–32 (1965).PubMedGoogle Scholar
  223. [223]
    Odhiambo, T. R.: The fine structure of the corpus allatum of the sexually mature male of the desert locust. J. Insect Physiol. 12, 819–828 (1966).Google Scholar
  224. [224]
    O’farell, M., and A. Stock: Influence of illumination on molting and regeneration in the cockroach Blatella germanica L. Nature (London) 195, 1122–1123 (1962).Google Scholar
  225. [225]
    Orr, C. W. M.: The influence of nutritional and hormonal factors on the chemistry of the fat body, blood, and ovaries of the blowfly Phormia regina Meig. J. Insect Physiol. 10, 103–119 (1964).Google Scholar
  226. [226]
    Östlund, E.: The distribution of catecholamines in lower animals and their effect on the heart. Acta Physiol. Scand. 31, suppl. 112, 1–67 (1954).Google Scholar
  227. [227]
    Ozeki, K.: Secretion of molting hormone from the ventral glands of the earwig, Anisolabis maritima. Sci. Papers Coll. Gen. Edue. Univ. Tokyo 9, 255–262 (1959).Google Scholar
  228. [228]
    Ozeki, K.: Hormonal control of molting in the earwig Anisolabis maritima. Sci. Papers Coll. Gen. Educ. Univ. Tokyo 10, 87–97 (1960).Google Scholar
  229. [229]
    Ozeki, K.: Secretion of the juvenile hormone in the imago of the earwig, Anisolabis maritima. Sci. Papers Coll. Gen. Educ. Univ. Tokyo 11, 101–107 (1961).Google Scholar
  230. [230]
    Ozeki, K.: Studies on the function of the corpus allatum during the last nymphal stage in the earwig, Anisolabis maritima. Sci. Papers Coll. Gen. Educ. Univ. Tokyo 15, 149–156 (1965).Google Scholar
  231. [231]
    Panov, A. A., and O. K. Basurmanova: Fine structure of the gland cells in inactive and active corpus allatum of the bug, Eurygaster integriceps. J. Insect Physiol. 16, 1265–1281 (1970).Google Scholar
  232. [232]
    Pener, M. P.: On the influence of corpora allata on maturation and sexual behaviour of Schistocerca gregaria. J. Zool. 147, 119–136 (1965).Google Scholar
  233. [233]
    Pener, M. P.: Effects of allatectomy and sectioning of the nerves of the corpora allata on oöcyte growth, male sexual behaviour, and colour change in adults of Schistocerca gregaria. J. Insect Physiol. 13, 665–684 (1967).Google Scholar
  234. [234]
    Pener, M. P.: The effect of corpora allata on sexual behaviour and “adult diapause” in males of the red locust. Entomol. Exp. and Appl. 11, 94–100 (1968).Google Scholar
  235. [235]
    Persaud, C. E., and K. G. Davey: The control of protease synthesis in the intestine of adults of Rhodnius prolixus. J. Insect Physiol. 17, 1429–1440 (1971).PubMedGoogle Scholar
  236. [236]
    Pfeiffer-Weed, I.: Effects of the corpora allata on the metabolism of adult female grasshoppers. J. Exp. Zool. 99, 183–233 (1945).Google Scholar
  237. [237]
    Pflugfelder, O.: Entwicklungsphysiologie der Insekten, 490 pp. Leipzig: Akademische Verlagsgesellschaft, Geest & Portig K. G. 1958.Google Scholar
  238. [238]
    Picheral, B.: Les tissues élaborateurs d’hormones stéroides chez les Amphibiens urodéles. II. Aspects ultrastructuraux de la glande interrénale de Salamandra salamandra (L.) Étude particulière du glycogène. J. Microscopie 7, 907–926 (1968).Google Scholar
  239. [239]
    Piepho, H.: Über die Hemmung der Verpuppung durch corpora allata. Untersuchungen an der Wachsmotte Galleria mellonella L. Biol. Zbl. 60, 367–393 (1940).Google Scholar
  240. [240]
    Piepho, H.: Hormonale Grundlagen der Spinntätigkeit bei Sehmetterlingsraupen. Z. Tierphysiol. 7, 424–434 (1950).Google Scholar
  241. [241]
    Piepho, H.: Über die Lenkung der Insektenmetamorphose durch Hormone. Verh. deutsch. Zool. Ges. 1951, 62–76.Google Scholar
  242. [242]
    Piepho, H.: Juvenilhormon und Verhalten bei der Wachsmotte. Naturwissenschaften 54, 50 (1967).PubMedGoogle Scholar
  243. [243]
    Piepho, E.L., and H. Meyer: Reaktionen der Schmetterlingshaut auf Häutungshormone. Biol. Zbl. 70, 252–260 (1951).Google Scholar
  244. [244]
    Pilcher, D. E. M.: Hormonal control of the malpighian tubules of the stick insect, Carausius morosus. J. Exp. Biol. 52, 653–665 (1970).PubMedGoogle Scholar
  245. [245]
    Pipa, R. L.: Studies on the hexapod nervous system. IV. A cytological and cytochemical study of neurons and their inclusions in the brain of a cockroach, Periplaneta americana (L.). Biol. Bull. Woods Hole 121, 521–534 (1961).Google Scholar
  246. [246]
    Pipa, R. L.: A cytochemical study of neurosecretory and other neoplasmic inclusions in Periplaneta americana. Gen. Comp. Endocrinol. 2, 44–52 (1962).PubMedGoogle Scholar
  247. [247]
    Possompès, B.: Recherches expérimentelles sur le déterminisme de la métamorphose chez Calliphora erythrocephala Meig. Arch. Zool. Exp. Gén. 89, 203–364 (1953).Google Scholar
  248. [248]
    Provansal, A.: Mise en évidence d’organes neurohémaux métamériques assoeiés à la chaine nerveuse ventrale chez Vespa crabro L. et Vespula germanica Fabr. (Hyménoptéres Vespidae). C. R. Aead. Sci. (Paris) 267, 864–867 (1968).Google Scholar
  249. [249]
    Raabe, M.: Neurohormones chez les insectes. Bull. Soc. Zool. France 90, 631–654 (1959).Google Scholar
  250. [250]
    Raabe, M.: Nouvelles recherches sur la neurosécretion chez les insectes. Ann. Endocrinol. (Paris) 25, suppl., 107–112 (1964).Google Scholar
  251. [251]
    Raabe, M.: Étude des phénoménes de neurosecretion au niveau de la chaine nerveuse ventrale des Phasmides. Bull. Soc. Zool. France 90, 631–654 (1965).Google Scholar
  252. [252]
    Raabe, M.: Recherches sur le neurosécrétion dans la chaîne nerveuse ventrale du Phasme, Carausius morosus: Liaison entre l’activité des cellules B, C et pigmentation. C. R. Acad. Sci. (Paris) 263, 408–411 (1966).Google Scholar
  253. [253]
    Raabe, M.: Recherches récentes sur la neurosécrétion dans la chaîne nerveuse ventrale des insectes. Bull. Soc. Zool. France 92, 67–71 (1967).Google Scholar
  254. [254]
    Raabe, M.: Neurosecretion in the ventral nerve cord of insects. Insect endocrines. Academia Praha 1971, 105–121.Google Scholar
  255. [255]
    Raabe, M., M. Cazal, D. Chalaye, and N. De Bessé: Action cardioaccélératrice des organes neurohémaux périsympathiques ventraux de quelques insectes. C. R. Acad. Sci. (Paris) 263, 2002–2005 (1966).Google Scholar
  256. [256]
    Raabe, M., and D. Monjo: Recherches histologiques et histochimiques sur le neurosécrétion chez le Phasme, Clitumnus extradentatus: les neuro-sécrétion du type C. C. R. Acad. Sci. (Paris) 270, 2021–2024 (1970).Google Scholar
  257. [257]
    Raabe, M., and F. Ramade: Observations sur l’ultrastructure des organes périsympathiques des Phasmides. C. R. Acad. Sci. (Paris) 264, 77–80 (1967).Google Scholar
  258. [258]
    Radtke, A.: Hemmung der Verpuppung beim Mehlkäfer, Tenebrio molitor L. Naturwissenschaften 30, 451–452 (1942).Google Scholar
  259. [259]
    Rahm, U. H.: Die innersekretorische Steuerung der postembryonalen Entwicklung von Sialis lutaria L. (Megaloptera). Rev. Suisse Zool. 59, 173–273 (1952).Google Scholar
  260. [260]
    Ralph, C. L.: Heart accelerators and decelerators in the nervous system of Periplaneta americana (L.). J. Insect Physiol. 8, 431–439 (1962).Google Scholar
  261. [261]
    Ralph, C. L., and R. J. Matta: Evidence for humoral effects on metabolism of cockroaches from studies of tissue homogenates. J. Insect Physiol. 11, 983–991 (1965).PubMedGoogle Scholar
  262. [262]
    Ralph, C. L., and C. Maccarthy: Effect of brain and corpus cardiacum extracts on haemolymph trehalose of the cockroach Periplaneta americana. Nature (London) 203, 1195 (1964).Google Scholar
  263. [263]
    Richter, A.: Über die Entwicklung der Schuppenorgane und der Genitalanhänge in Abhängigkeit vom Hormonsystem bei Lepisma saccharina L. Roux Arch. Entwicklungsmech. 154, 1–28 (1962).Google Scholar
  264. [264]
    Riddiford, L. M., and C. M. Williams: Role of the corpora cardiaca in the behavior of saturniid moths. I. Reléase of sex pheromones. Biol. Bull. Woods Hole 140, 1–7 (1971).Google Scholar
  265. [265]
    Rinterknecht, E.: Influence de l’hormone juvénile sur la reconstitution des téguments ehez Locusta migratoria adulte. Bull. Soc. Zool. France 89, 723–730 (1964).Google Scholar
  266. [266]
    Rinterknecht, E.: Influence de l’hormone de la mue sur la reconstitucion des téguments chez Locusta migratoria larvaire. (stade V). Bull. Soc. Zool. France 91, 645–654 (1966).Google Scholar
  267. [267]
    Rinterknecht, E.: Controle hormonale de la cicatrisation chez Locusta migratoria. Role de la pars intercerbralis chez les sujets larvaires. Bull. Soc. Zool. France 91, 789–802 (1966).Google Scholar
  268. [268]
    Rohdendorf, E.: Der Einfluß der Allatektomie auf adulte Weibchen von Thermobia domestica Packard (Lepismatidae. Thysanura). Zool. Jb. Physiol. 8, 685–693 (1966).Google Scholar
  269. [269]
    Röller, H., and K. H. Dahm: The identity of juvenile hormone produced by corpora allata in vitro. Naturwissenschaften 57, 454–455 (1970).PubMedGoogle Scholar
  270. [270]
    Röller, E.L., H. Piepho, and I. Holz: Zum Problem der Hormonalabhängigkeit des Paarungsverhaltens bei Insekten. Untersuchungen an Galleria mellonella L. J. Insect Physiol. 9, 187–194 (1963).Google Scholar
  271. [271]
    Romee, F.: Häutungshormone in den Oenocyten des Mehlkäfers. Naturwissenschaften 58, 324–325 (1971).Google Scholar
  272. [272]
    Roth, L. M., and R. H. Barth, Jr.: The control of sexual receptivity in female cockroaches. J. Insect Physiol. 10, 965–975 (1964).Google Scholar
  273. [273]
    Roussel, J. P.: Consommation d’oxygéne après ablation des corpora allata chez des femelles adultes de Locusta migratoria. J. Insect Physiol. 9, 721–725 (1963).Google Scholar
  274. [274]
    Roussel, J. P.: Fonctions des corpora allata et controle de la pigmentation chez Gryllus bimaculatus De Geer. J. Insect Physiol. 13, 113–130 (1967).Google Scholar
  275. [275]
    Roussel, J. P.: Rhythme et régulation du coeur chez Locusta migratoria migratoroides L. Acrida 1, 17–39 (1971).Google Scholar
  276. [276]
    Sägesser, H.: Über die Wirkung der Corpora allata auf den Sauerstoffverbrauch bei der Schabe Leucophaea maderae (F.). J. Insect Physiol. 5, 264–285 (1960).Google Scholar
  277. [277]
    Scharrer, B.: The relationship between corpora allata and reproductive organs in adult Leucophaea maderae. Endocrinology 38, 46–55 (1946).PubMedGoogle Scholar
  278. [278]
    Scharrer, B.: Functional analysis of the corpus allatum of the insect Leucophaea maderae, with the electron microscope. Biol. Bull. Woods Hole 121, 370 (1961).Google Scholar
  279. [279]
    Scharrer, B.: The neurosecretory system of Leucophaea maderae and its role in neuroendocrine integration. Gen. Comp. Endocrinol. 2, 30 (1962).Google Scholar
  280. [280]
    Scharrer, B.: Neurosecretion. XIII. The ultrastructure of the corpus cardiacum of the insect Leucophaea maderae. Z. Zellforsch. 60, 761–796 (1963).PubMedGoogle Scholar
  281. [281]
    Scharrer, B.: The fine structure of Blattarian prothoracic glands. Z. Zellforsch. 64, 301–326 (1964).PubMedGoogle Scholar
  282. [282]
    Scharrer, B.: Histophysiological studies on the corpus allatum of Leucophaea maderae. IV. Ultrastructure during normal activity cycle. Z. Zellforsch. 62, 125–148 (1964).PubMedGoogle Scholar
  283. [283]
    Scharrer, B.: Recent progress in the study of neuroendocrine mechanisms in insects. Arch. Anatom. Microscop. 54, 331–342 (1965).Google Scholar
  284. [284]
    Scharrer, B.: Ultrastructural study of the regressing prothoracic glands of Blattarian insects. Z. Naturforsch. 69, 1–21 (1966).Google Scholar
  285. [285]
    Scharrer, B.: The neurosecretory neuron in neuroendocrine regulatory mechanisms. Amer. Zool. 7, 161–169 (1967).Google Scholar
  286. [286]
    Scharrer, B.: Neurosecretion. XIV. Ultrastructural study of sites of release of neurosecretory material in Blattarian insects. Z. Zellforsch. 89, 1–16 (1968).Google Scholar
  287. [287]
    Scharrer, B.: Current concepts in the field of neurochemical mediation. MCV Quarterly 5, 27–31 (1969).Google Scholar
  288. [288]
    Scharrer, B.: Neurohumors and neurohormones: Definitions and terminology. In: Ariëns Kappers, J., ed.: Neurohormones and Neurohumors (Journal of Neuro-Visceral Relations, Supplementum IX), pp. 1–20. Wien-New York: Springer. 1969.Google Scholar
  289. [289]
    Scharrer, B.: General principies of neuroendocrine communication. In: Schnitt, F. O., ed.: The Neurosciences, pp. 519–529. New York: Rockefeller Univ. Press. 1970.Google Scholar
  290. [290]
    Scharrer, B.: Histophysiological studies on the corpus allatum of Leucophaea maderae. V. Ultrastructure of sites of origin and release of a distinctive cellular product. Z. Zellforsch. 120, 1–16 (1971).PubMedGoogle Scholar
  291. [291]
    Scharrer, B., and M. Von Harnack: Histophysiological studies on the corpus allatum of Leucophaea maderae. I. Normal life cycle in male and female adults. Biol. Bull. Woods Hole 115, 508–520 (1958).Google Scholar
  292. [292]
    Scharrer, B., and M. Von Harnack: Histophysiological studies on the corpus allatum of Leucophaea maderae. III. The effect of castration. Biol. Bull. Woods Hole 121, 193–208 (1961).Google Scholar
  293. [293]
    Scharrer, B., and M. Weitzmann: Current problems in invertebrate neurosecretion. In: Bargmann, W., and B. Scharrer, eds.: Aspects of Neuroendocrinology, pp. 1–23. Berlin-Heidelberg-New York: Springer. 1970.Google Scholar
  294. [294]
    Scharrer, E.: Photo-neuro-endocrine systems: General concepts. Ann. N. Y. Acad. Sci. 117, 13–22 (1964).PubMedGoogle Scholar
  295. [295]
    Scheuer, R.: Endocrine control of protein synthesis during oöcyte maturation in the cockroach Leucophaea maderae. J. Insect Physiol. 15, 1411–1419 (1969).Google Scholar
  296. [296]
    Scheuer, R., and R. Leuthold: Haemolymph proteins and water uptake in female Leucophaea maderae during the sexual cycle. J. Insect Physiol. 15, 1067–1077 (1969).Google Scholar
  297. [297]
    Scheuer, R., and M. Lüscher: Nachweis der Synthese eines Dotter-proteins unter dem Einfluß der Corpora allata bei Leucophaea maderae. Rev. Suisse Zool. 75, 715–722 (1968).Google Scholar
  298. [298]
    Schneidermann, H. A.: Control systems in insect development. In: Devons, S., ed.: Biology and the Physical Sciences, pp. 186–208. Columbia Univ. Press. 1969.Google Scholar
  299. [299]
    Schneidermann, H. A., and L. I. Gilbert: Control of growth and development in insects. Science 143, 325–333 (1964).Google Scholar
  300. [300]
    Schneidermann, H. A., and C. M. Williams: The physiology of insect diapause. VII. The respiratory metabolism of the cecropia silkworm during diapause and development. Biol. Bull. Woods Hole 105, 320–334 (1953).Google Scholar
  301. [301]
    Schooneveld, H.: Structural aspects of neurosecretory and corpus allatum activity in the adult colorado beetle, Leptinotarsa decemlineata Say, as a function of daylength. Netherlands J. Zool. 20, 151–237 (1970).Google Scholar
  302. [302]
    Sehnal, F.: Influence of the corpus allatum on the development of intestinal organs in Galleria mellonella L. J. Insect Physiol. 14, 73–85 (1968).Google Scholar
  303. [303]
    Sehnal, F.: Endoerines of Arthropods. Chem. Zool. 6, 307–345 (1971).Google Scholar
  304. [304]
    Sehnal, F.: Juvenile hormone action and insect growth rate. Endocrinol. exp. 5, 29–33 (1971).PubMedGoogle Scholar
  305. [305]
    Sehnal, F., and V. J. A. Novák: Morphogenesis of the pupal integument in the waxmoth (Galleria mellonella) and its analysis by means of juvenile hormone. Acta entomol. bohemoslov. 66, 137–145 (1969).Google Scholar
  306. [306]
    Sehnal, F., and K. Sláma: The effect of corpus allatum hormone on respiratory metabolism during larval development and ecdysis of Galleria mellonella. J. Insect Physiol. 12, 1333–1342 (1966).Google Scholar
  307. [307]
    Seligman, M., S. Friedman, and G. Fraenkel: Bursicon mediation of tyrosine hydroxylation during tanning of the adult cuticle of the fly, Sarcophaga bullata. J. Insect. Physiol. 15, 553–561 (1969).PubMedGoogle Scholar
  308. [308]
    Shappirio, D. G., and C. M. Williams: The cytochrome system of the Cecropia silkworm. I. Spectroscopic studies of individual tissues. Proc. Roy. Soc. (London) B 147, 218–232 (1957).Google Scholar
  309. [309]
    Sláma, K.: Oxygen consumption during the postembryonic development of Pyrrhocoris apterus (Heterometabola: Heteroptera) and its comparsion with that of Holometabola. Ann. Entomol. Soc. Amer. 53, 606–610 (1960).Google Scholar
  310. [310]
    Sláma, K.: Die Einwirkung des Juvenilhormons auf die Epidermiszellen der Flügelanlagen bei künstlich beschleunigter und verzögerter Metamorphose von Pyrrhocoris apterus L. Zool. Jb. Physiol. 70, 427–454 (1964).Google Scholar
  311. [311]
    Sláma, K.: Hormonal control of haemolymph protein concentration in the adults of Pyrrhocoris apterus L. (Hemiptera). J. Insect Physiol. 10, 773–782 (1964).Google Scholar
  312. [312]
    Sláma, K.: Hormonal control of respiratory metabolism during growth, reproduction, and diapause in female adults of Pyrrhocoris apterus L. (Hemiptera). J. Insect Physiol. 10, 283–303 (1964).Google Scholar
  313. [313]
    Sláma, K.: Hormonal control of respiratory metabolism during growth, reproduction, and diapause in male adults of Pyrrhocoris apterus L. (Hemiptera). Biol. Bull. Woods Hole 127, 499–510 (1964).Google Scholar
  314. [314]
    Sláma, K.: Physiology of sawfly metamorphosis. 2. Hormonal activity during diapause and development. Acta Soc. entomol. bohemoslov. 61, 210–219 (1964).Google Scholar
  315. [315]
    Sláma, K.: Effect of hormones on growth and respiratory metabolism in the larvae of Pyrrhocoris apterus L. (Hemiptera). J. Insect Physiol. 11, 113–122 (1965).PubMedGoogle Scholar
  316. [316]
    Sláma, K.: Effect of hormones on the respiration of body fragments of adult Pyrrhocoris apterus L. (Hemiptera). Nature (London) 205, 416–417 (1965).Google Scholar
  317. [317]
    Sláma, K.: Hormonal control of developmental and metabolic cycles in insects. Gen. Comp. Endoerinol. 9, 492–493 (1968).Google Scholar
  318. [318]
    Sláma, K.: Hormonal control of metabolism in Pyrrhocoris. Endocrinol. exp. 5, 85–90 (1971).PubMedGoogle Scholar
  319. [319]
    Sláma, K., and H. Hrubešová: Übereinstimmung in der Einwirkung von larvalen und imaginalen Corpora allata auf den Respirationsmetabolismus und die Reproduktion bei Pyrrhocoris apterus L.-Weibchen. Zool. Jb. Physiol. 70, 291–300 (1963).Google Scholar
  320. [320]
    Southwood, T. R. E.: A hormonal theory of wing polymorphism in Heteroptera. Proc. R. Entomol. Soc. 36, 63–66 (1961).Google Scholar
  321. [321]
    Srivastava, P. N.: The prothoracic glands of some Coleopteran larvae. Quart. J. Microscop. Sci. 100, 51–64 (1959).Google Scholar
  322. [322]
    Srivastava, P. N.: Secretory cycle and disappearance of prothoracic glands in Tenebrio molitor L. (Coleoptera: Tenebrionidae). Experientia 16, 445–446 (1960).Google Scholar
  323. [323]
    Staal, G. B.: Endocrine effects in phase development in locusts. Acta Symp. Evol. Insect. Praha 1959, 142–146.Google Scholar
  324. [324]
    Staal, G. B.: Studies on the physiology of phase induction in Locusta migratoria migratoroides R. et F. Publ. Fonds Land. Exp. Burean. 40, 1–125 (1961).Google Scholar
  325. [325]
    Staal, G. B.: Endocrine aspects of larval development in insects. J. Endoerinol. 37, 13–14 (1967).Google Scholar
  326. [326]
    Staal, G. B., and J. De Wilde: Endocrine influence on the development of phase characters in Locusta. Coll. Int. Centr. Natn. Rech. Scient. 114, 89–105 (1962).Google Scholar
  327. [327]
    Steele, J. E.: Occurence of a hyperglycaemic factor in the corpus cardiacum of an insect. Nature (London) 192, 680–681 (1961).Google Scholar
  328. [328]
    Steele, J. E.: The site of action of insect hyperglycaemic hormone. Gen. Comp. Endocrinol. 3, 46–52 (1963).Google Scholar
  329. [329]
    Stegwee, D.: Metabolic effect of a corpus allatum hormone in diapausing Leptinotarsa decemlineata Say. Proc. 11th Int. Congr. Entomol. Symp. 3, 218–221 (1960).Google Scholar
  330. [330]
    Stengel, M., and G. Schubert: Rôle des corpora allata dans le compartement migrateur de la femelle de Melolontha melolontha L. (Coleoptera, Scarabaeidae). C. R. Acad. Sci. (Paris) 270, 181–184 (1970).Google Scholar
  331. [331]
    Strangways-Dixon, J.: The relationship between nutrition, hormones, and reproduction in the blowfly Calliphora erythrocephala. J. Exp. Biol. 38, 225–235 (1961).Google Scholar
  332. [332]
    Strich, M. C.: Étude de la glande ventrale chez Locusta migratoria. Ann. Sci. Nat. Zool. 16, 399–410 (1954).Google Scholar
  333. [333]
    Strong, L.: The relationships between the brain, corpora allata, and oöcyte growth in the central american locust, Schistocerca sp. II. The innervation of the corpora allata, the lateral neurosecretory complex, and oöcyte growth. J. Insect Physiol. 11, 271–280 (1965).PubMedGoogle Scholar
  334. [334]
    Stutinski, F.: Einfluß der Extrakte von Corpora cardiaca und neurosekretorischen Gehirnzellen und die Exkretion des Wassers in der Ratte. Bull. Soc. Zool. France 78, 202–204 (1952).Google Scholar
  335. [335]
    Telfer, W. H.: The selective accumulation of blood proteins by the oöcytes of saturniid moths. Biol. Bull. Woods Hole 118, 338–351 (1960).Google Scholar
  336. [336]
    Telfer, W. H.: The meehanism and control of yolk formation. Annu. Rev. Entomol. 10, 161–184 (1965).Google Scholar
  337. [337]
    Thomas, K. K., and L. I. Gilbert: Isolation and eharaeterization of the haemolymph lipoproteins of the american silkmoth Hyalophora cecropia. Arch. Biochem. Biophys. 127, 512–521 (1968).PubMedGoogle Scholar
  338. [338]
    Thomas, K. K., and L. I. Gilbert: The haemolymph lipoproteins of the silkmoth Hyalophora gloveri: studies on lipid composition, origin and function. Physiol. Chem. & Phys. 1, 293–311 (1969).Google Scholar
  339. [339]
    Thomsen, B.: Influence of the corpus allatum on the oxygen consumption of adult Calliphora erythrocephala (Meig). T. Exp. Biol. 26, 137–149 (1949).Google Scholar
  340. [340]
    Thomsen, E.: Functional signifieanee of the neuroseeretory brain cells and the corpus cardiaeum in the female blowfly, Calliphora erythrocephala Meig. J. Exp. Biol. 29, 137–172 (1952).Google Scholar
  341. [341]
    Thomsen, E.: Esterase in the cells of the hind midgut of the Calliphora erythrocephala female, and its possible dependenee on the medial neuroseeretory cells of the brain. Z. Naturforsch. 75, 281–303 (1966).Google Scholar
  342. [342]
    Thomsen, M.: The neurosecretory system of the adult Calliphora erythrocephala, IV. A histological study of the corpus cardiaeum and its connections with the nervous system. Z. Zellforsch. 94, 205–219 (1969).PubMedGoogle Scholar
  343. [343]
    Thomsen, E., and A. O. Lea: Control of the medial neuroseeretory cells by the corpus allatum in Calliphora erythrocephala. Gen. Comp. Endocrinol. 12, 51–57 (1969).PubMedGoogle Scholar
  344. [344]
    Thomsen, E., and I. Møller: Neurosecretion and intestinal proteinase activity in an insect, Calliphora erythrocephala Meig. Nature (London) 183, 1401–1402 (1959).Google Scholar
  345. [345]
    Thomsen, E., and M. Thomsen: Fine structure of the corpus allatum of the female Calliphora, with special reference to hormone formation. Gen. Comp. Endocrinol. 13, 534 (1969).Google Scholar
  346. [346]
    Thomsen, E., and M. Thomsen: Fine structure of the corpus allatum of the female blow-fly Calliphora erythrocephala. Z. Zellforsch. 110, 40–60 (1970).PubMedGoogle Scholar
  347. [347]
    Truman, J.W.: Hour-glass behavior of the circadian clock controlling eclosion of the silkmoth Antheraea pernyi. Proc. Natn. Acad. Sci. Amer. 68, 595–599 (1971).Google Scholar
  348. [348]
    Truman, J.W., and L.M. Riddiford: Neuroendocrine control of ecysis in silkmoths. Science 167, 1624–1626 (1970).PubMedGoogle Scholar
  349. [349]
    Truman, J. W., and L. M. Riddiford: Role of the corpora cardiaca in the behavior of saturniid moths. II. Oviposition. Biol. Bull. Woods Hole 140, 8–14 (1971).Google Scholar
  350. [350]
    Unger, H.: Untersuchungen zur neurohormonalen Steuerung der Herztätigkeit bei Schaben. Biol. Zbl. 76, 204–225 (1967).Google Scholar
  351. [351]
    Vandenberg, J. P.: The role of the gonadotropic hormone in the synthesis of protein and RNA in Rhodnius prolixus (Hemiptera). Biol. Bull. Woods Hole 125, 576–581 (1963).Google Scholar
  352. [352]
    Vietinghoff, U., H. Penzlin, and L. Spannhof: Kernvolumetrische Untersuchungen an den Pericardialdrüsen regenerierender Stabheuschrecken Carausius morosus. Naturwissenschaften 15, 370 (1964).Google Scholar
  353. [353]
    Viczent, J. F. V.: Effects of bursicon on cuticular properties in Locusta migratoria migratoroides. J. Insect Physiol. 17, 625–636 (1971).Google Scholar
  354. [354]
    Vogt, M.: Zur Produktion und Bedeutung metamorphosefördernden Hormone während der Larvenentwicklung von Drosophila. Biol. Zbl. 63, 395–446 (1943).Google Scholar
  355. [355]
    Vogt, M.: Zur hormonalen Förderung imaginaler Differenzierungsprozesse bei Drosophila. Maturwissensehaften 32, 37–39 (1944).Google Scholar
  356. [356]
    Wajc, E., and M.P. Pener: The effect of the corpora allata on the mating behaviour of the male migratory locust Locusta migratoria migratoroides (R & F.). Israel J. Zool. 18, 179–192 (1969).Google Scholar
  357. [357]
    Waku, Y.: Studies on the hibernation and diapause in insects. IV. Histological observations of the endocrine organs in the diapause and non-diapause larvae of the indian meal-moth, Plodia interpunctella Hübner. Sci. Rep. Tohoku Univ. Biol. 26, 327–340 (1960).Google Scholar
  358. [358]
    Waku, Y., and L. I. Gilbert: The corpora allata of the silkworm, Hyalophora cecropia: An ultrastructural study. J. Morphol. 115, 69–96 (1964).PubMedGoogle Scholar
  359. [359]
    Walker, P. B., and E. Bailey: Effect of allatectomy on fat body lipid metabolism of the male desert locust during adult development. J. Insect Physiol. 17, 813–821 (1971).Google Scholar
  360. [360]
    Watson, J.A.L.: Moulting and reproduction in the adult firebrat Thermobia domestica (Packard) (Thysanura, Lepismatidae). I. The moulting cycle and its control. J. Insect Physiol. 10, 305–317 (1964).Google Scholar
  361. [361]
    Wells, M. J.: The thoracic glands of Hemiptera-Heteroptera. Quart. J. Microscop. Sci. 95, 231–244 (1954).Google Scholar
  362. [362]
    White, D. F.: Corpus allatum activity associated with development of wingbuds in cabbage aphid embryos and larvae. J. Insect Physiol. 17, 761–773 (1971).Google Scholar
  363. [363]
    Wiens, A. W., and L.I. Gilbert: Regulation of cockroach fat body metabolism by the corpus cardiacum in vitro. Science 150, 614–616 (1965).PubMedGoogle Scholar
  364. [364]
    Wiens, A.W., and L. I. Gilbert: Regulation of carbohydrate mobilization and utilization in Leucophaea maderae. J. Insect Physiol. 13, 779–794 (1967).PubMedGoogle Scholar
  365. [365]
    Wigglesworth, V. B.: Function of the corpus allatum in insects. Nature (London) 136, 338 (1935).Google Scholar
  366. [366]
    Wigglesworth, V.B.: The function of the corpus allatum in the growth and reproduction of Rhodnius prolixus. Quart. J. Microscop. Sci. 79, 91–119 (1936).Google Scholar
  367. [367]
    Wigglesworth, V.B.: The determination of characters at metamorphosis in Rhodnius prolixus. J. Exp. Biol. 17, 201–222 (1940).Google Scholar
  368. [368]
    Wigglesworth, V.B.: The significance of “chromatic droplets” in the growth of insects. Quart. J. Microscop. Sci. 83, 141–152 (1942).Google Scholar
  369. [369]
    Wigglesworth, V.B.: The thoracic gland of Rhodnius and its role in moulting. J. Exp. Biol. 29, 620–631 (1952).Google Scholar
  370. [370]
    Wigglesworth, V.B.: Principies of insect physiology, 3rd ed. London: 1953.Google Scholar
  371. [371]
    Wigglesworth, V.B.: The physiology of insect metamorphosis, 152 pp. Cambridge: Cambr. Monogr. Exp. Biol. 1. 1954.Google Scholar
  372. [372]
    Wigglesworth, V.B.: The role of the haemocytes in the growth and moulting of an insect, Rhodnius prolixus (Hemiptera). J. Exp. Biol. 32, 659–663 (1955).Google Scholar
  373. [373]
    Wigglesworth, V.B.: Insect polymorphism-a tentative synthesis. In: Kennedy, J.S., ed.: Insect polymorphism, pp. 103–113. Dorking, Surrey: Bartholomew Press. 1961.Google Scholar
  374. [374]
    Wigglesworth, V. B.: Some observations on the juvenile hormone effect of farnesol in Rhodnius prolixus Stål (Hemiptera). J. Insect Physiol. 7, 73–78 (1961).Google Scholar
  375. [375]
    Wigglesworth, V.B.: The action of moulting hormone and juvenile hormone at the cellular level in Rhodnius prolixus. J. Exp. Biol. 40, 231–245 (1963).Google Scholar
  376. [376]
    Wigglesworth, V.B.: Homeostasis in inseet growth. Symp. Soc. Exp. Biol. 18, 265–281 (1964).PubMedGoogle Scholar
  377. [377]
    Wigglesworth, V. B.: The hormonal regulation of growth and reproduction in insects. In: Beament, J. W. L., et al., eds.: Advanees in inseet physiology 2, pp. 248–335. New York: Academic Press. 1964.Google Scholar
  378. [378]
    Wigglesworth, V.B.: Hormonal regulation of differentiation in insects. In: Beermann, W., ed.: Cell differentiation and morphogenesis, pp. 180–209. North Holland Publ. Co. 1966.Google Scholar
  379. [379]
    Wigglesworth, V. B.: Inseet hormones, 159 pp. Edinburgh: Oliver & Boyd, R. & R. Clark Ltd. 1970.Google Scholar
  380. [380]
    Wilde, J. DE: Diapause in the colorado beetle Leptinotarsa decemlineata Say as an endocrine deficiency syndrome of the corpora allata. Acta Symp. Evol. Insects Prague 1959, 226–230.Google Scholar
  381. [381]
    Wilde, J. DE: Analysis of the diapause syndrome in the colorado potato beetle (Leptinotarsa decemlineata Say); Behaviour and reproduction. Acta Physiol. Pharmacol. Neerl. 11, 93 (1962).Google Scholar
  382. [382]
    Wilde, J. DE: Reproduetion-endocrine control. In: Rockstein, M.,ed.: The physiology of insecta 1, pp. 59–90. New York: Academic Press. 1964.Google Scholar
  383. [383]
    Wilde, J. DE: Photoperiodic control of endocrines in insects. Arch. Anatom. Microscop. 54, 547–564 (1965).Google Scholar
  384. [384]
    Wilde, J. DE: Hormones and diapause. Progress in Endocrinology, pp. 351–355. Excerpta Medica International Congress. Series 184 (1968).Google Scholar
  385. [385]
    Wilde, J. De, and S.A. Boer: Physiology of diapause in the adult colorado beetle-II. Diapause as a case of pseudo-allatectomy. J. Insect Physiol. 6, 152–161 (1961).Google Scholar
  386. [386]
    Wilde, J. De, and D. Stegwee: TWO major effects of the corpus allatum in the adult colorado beetle (Leptinotarsa decemlineata). Archs. Neerl. Zool. 13, suppl., 227–289 (1958).Google Scholar
  387. [387]
    Wilkens, J.L.: The endocrine and nutritional control of egg maturation in the fleshfly Sarcophaga bullata. J. Inseet Physiol. 14, 927–943 (1968).Google Scholar
  388. [388]
    Williams, C.M.: The function of the brain in terminating pupal diapause in the giant silkworm Platysamia cecropia. Anatom. Rec. 99, 115 (1947).Google Scholar
  389. [389]
    Williams, C.M.: Physiology of insect diapause. II. Interaction between the pupal brain and prothoracic glands in the metamorphosis of the giant silkworm Platysamia cecropia. Biol. Bull. Woods Hole 93, 89–98 (1947).Google Scholar
  390. [390]
    Williams, C.M.: Physiology of insect diapause. III. The prothoracic glands in the Cecropia silkworm, with special reference to their significance in embryonic and postembryonie development. Biol. Bull. Woods Hole 94, 60–65 (1948).Google Scholar
  391. [391]
    Williams, C.M.: The prothoracic glands of insects in retrospect and in prospect. Biol. Bull. Woods Hole 97, 111–114 (1949).Google Scholar
  392. [392]
    Williams, C.M.: Morphogenesis and metamorphosis of insects. Harvey Lectures 47, 126–155 (1952).Google Scholar
  393. [393]
    Williams, C.M.: Physiology of insect diapause. IV. The brain and prothoracic glands as an endocrine system in the cecropia silkworm. Biol. Bull. Woods Hole 103, 120–138 (1952).Google Scholar
  394. [394]
    Williams, C.M.: Physiology of insect diapause. X. An endocrine mechanism for the influenee of temperature on the diapausing pupa of the ceeropia silkworm. Biol. Bull. Woods Hole 110, 201–218 (1956).Google Scholar
  395. [395]
    Williams, C.M.: The juvenile hormone. I. Endoerine activity of the corpora allata of the adult cecropia silkworm. Biol. Bull. Woods Hole 116, 323–338 (1959).Google Scholar
  396. [396]
    Williams, C.M.: The present status of the brain hormone. In: Beament, J.W.L., and J.E. Trehebne, eds.: Insects and physiology, pp. 133–139. Edinburgh-London: Oliver & Boyd. 1967.Google Scholar
  397. [397]
    Williams, C.M.: Photoperiodism and the endocrine aspects of insect diapause. Symp. Soc. Exp. Biol. 23, 285–300 (1969).PubMedGoogle Scholar
  398. [398]
    Williams, C.M., and F.C. Kafatos: Theoretical aspects of the action of juvenile hormone. Bull. Entomol. Soc. Suisse 44, 151–162 (1971).Google Scholar
  399. [399]
    Willig, A., H.H. Rees, and T.W. Goodwin: Biosynthesis of insect moulting hormones in isolated ring glands and whole larvae of Calliphora. J. Insect Physiol. 17, 2317–2326 (1971).Google Scholar
  400. [400]
    Wyatt, G. B.: Effects of experimental injury on carbohydrate metabolism in silkmoth pupae. Fed. Proc. (USA) 20, 81 (1961).Google Scholar
  401. [401]
    Wyatt, G.R.: Biochemistry of insect metamorphosis. In: Etkin, W., and L.I. Gilbert, eds.: Metamorphosis: A problem in developmental biology, pp. 143–184. New York: Meredith Corp. 1968.Google Scholar
  402. [402]
    Wyatt, G.R., A.E. Gussin, and A. R. Gilby: The activation of insect muscle trehalase. Fed. Proc. (USA) 24, 125 (1965).Google Scholar
  403. [403]
    Wyss-Huber, M., and M. Lüscher: Über dio hormonale Beeinflußbarkeit der Proteinsynthese in vitro im Fettkörper von Leucophaea maderae (Insecta). Rev. Suisse Zool. 73, 517–521 (1966).Google Scholar
  404. [404]
    Yamashita, O., and K. Hasegawa: Further studies on the mode of action of the diapause hormone in the silkworm, Bombyx mori L.J. Insect Physiol. 12, 957–962 (1966).Google Scholar
  405. [405]
    Yamashita, O., and K. Hasegawa: The effect of the diapause hormone on the trehalase activity in pupal ovaries of the silkworm (A preliminary note). Proc. Japan Acad. Sci. 43, 547–551 (1967).Google Scholar
  406. [406]
    Yamazaki, M., and M. Kobayashi: Purification of the proteinic brain hormone of the silkworm, Bombyx mori. J. Insect Physiol. 15, 1981–1990 (1969).Google Scholar
  407. [407]
    Žďarek, J.: Le comportement d’accouplement à la fin de la diapause imaginale et son controle hormonal dans le cas de la punaise Pyrrhocoris apterus L. (Pyrrhocoridae, Heteroptera). Ann. Endocrinol. (Paris) 29, 703–707 (1968).Google Scholar
  408. [408]
    Žďarek, J.: Mating behaviour in the bug, Pyrrhocoris apterus L. (Heteroptera): ontogeny and its environmental control. Behaviour 37, 253–268 (1970).Google Scholar
  409. [409]
    Žďárek:, J.: Hormonal control of mating behaviour in Pyrrhocoris apterus L. In: Novák, V.J.A., and K. Sláma, eds.: Insect endocrines, pp. 51–61. Praha: Academia. 1971.Google Scholar
  410. [410]
    Žďárek, J., and G. Fraenkel: Correlated effects of ecdysone and neurosecretion in puparium formation (pupariation) of flies. Proc. Natn. Acad. Sci. Amer. 64, 565–572 (1969).Google Scholar

Copyright information

© Springer-Verlag/Wien 1974

Authors and Affiliations

  • K. Sláma
    • 1
  • M. Romaňuk
    • 2
  • F. Šorm
    • 2
  1. 1.Institute of Organic Chemistry and BiochemistryInstitute of EntomologyPragueCzech Republic
  2. 2.Institute of Organic Chemistry and BiochemistryCzechoslovak Academy of SciencesPragueCzech Republic

Personalised recommendations