Physico-Mechanical Properties to Be Reproduced in the Model Materials

  • Emanuele Fumagalli


In the preceding chapter we discussed the parameters of similitude that must be respected by the model materials. Naturally it is worth limiting these parameters to those that have a direct influence on the phenomenon to be studied. For example, for a static investigation limited to the elastic region we have seen that it is sufficient not to produce deformations beyond the linearly elastic range in the course of the tests. In this case the only value that needs to be considered is the ratio ζ between the Young’s moduli, that represents the “ratio of efficiency” of the model material.


Model Material Reinforce Concrete Powdered Limestone Ultimate Compressive Strength Normal Concrete 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Barton, N. R.: A Low Strength Material for Simulation of the Mechanical Properties of Intact Rock in Rock Mechanics Models. Proceedings of the Second Congress of the I. S. R. M., Beograd, 1970, pp. 3–15.Google Scholar
  2. [2]
    Cruz Azevedo, M., Esteves Ferreira, M. J.: Construction of Models of Concrete Dams for Elastic Tests. L. N. E. C., Bulletin Nr. 232, Lisbon (1964).Google Scholar
  3. [3]
    Deere, D. U.: Geologic Considerations. Rock Mechanics in Engineering Practice, Ch. 1 ( Stagg-Zienkiewicz, eds.). London: J. Wiley. 1968.Google Scholar
  4. [4]
    Fialho Lobos, J. F.: The Use of Plastic for Making Structural Models. Rilem, Bulletin, New Series Nr. 8, 65–74, Paris (September 1960).Google Scholar
  5. [5]
    Fumagalli, E.: Communications sur les matériaux pour modèles statiques de barrages en béton. 5th Congress on Large Dams, Communication C.26, Paris (1955).Google Scholar
  6. [6]
    Fumagalli, E.: Model Simulation of Rock Mechanics Problems. Rock Mechanics in Engineering Practice, Ch. 11 ( Stagg-Zienkiewicz, eds.). London: J. Wiley. 1968.Google Scholar
  7. [7]
    Fumagalli, E.: Matériaux pour modèles réduits et installations de charge. Ismes, Bulletin Nr. 13 (April 1959).Google Scholar
  8. [8]
    Fumagalli, E.: Tecnica e materiali per la modellazione delle rocce di fondazione di sbarramenti idraulici. Ismes, Bulletin Nr. 17 (May 1962).Google Scholar
  9. [9]
    Fumagalli, E.: Modèles géomécaniques des réservoirs artificiels: matériaux, technique d’essais, exemples de reproduction sur modèles. Ismes, Bulletin Nr. 26 (October 1964).Google Scholar
  10. [10]
    Hobbs, D. W.: The Behavior and Simulation of Sedimentary Rocks. National Cool Board, Mining Research Establishment, Isleworth, Middlesex (1966).Google Scholar
  11. [11]
    Holdvridge, D. A., Walker, E. G.: The Dehydration of Gypsum and the Rehydration of Plaster. Trans. Brit. Cer. Soc., Vol. 66, 485–509 (1967).Google Scholar
  12. [12]
    Johnson, R. P.: Strength Tests on Scaled-down Concretes Suitable for Models, with a Note on Mix Design. Magazine of Concrete Research, Vol. 14, Nr. 40. London: Cement and Concrete Association (March 1962).Google Scholar
  13. [13]
    Lee, J. A. N., Coates, R. C.: The Use of Gypsum Plaster as a Model Material. Civil Engineering and Public Works, Review, London, Vol. 52, Nr. 617, 1261–1263 (November 1957).Google Scholar
  14. [14]
    Neville, A. M.: A General Relation for Strengths of Concrete Specimens of Different Shapes and Sizes. Journal Americal Concrete Institute, Vol. 63, Nr. 10 (October 1966).Google Scholar
  15. [15]
    O’Kelly, B. M.: Physical Charges in Setting Gypsum Plaster. Technical Paper 75, ASTM, Bulletin Nr. 237 (April 1959).Google Scholar
  16. [16]
    Preece, B. W., Sandover, J. A.: Plaster Models and Reinforced Concrete Design. Structural Concrete, Reinforced Concrete Association, London, Vol. 1, Nr. 3, 148–154 (May—June 1962 ).Google Scholar
  17. [17]
    Raphael, J. M.: Properties of Plaster-Celite Mixtures for Models. Symposium on Concrete Dam Models, Lisbon (October 1968).Google Scholar
  18. [18]
    Rauganatham, B. V., Subba Rao, K. S., Hendry, A. W.: Plaster Mortars for Small Scale Tests. ACI Journal, Proceedings, Vol. 64, Nr. 9, 594–601 (September 1967).Google Scholar
  19. [19]
    Riddel, W. C.: Physical Properties of Calcined Gypsum. Rock Products, Vol. 53, Nr. 5 (May 1950).Google Scholar
  20. [20]
    Ridge, M. J.: Mechanism of Setting of Gypsum Plaster. Reviews of Pure and Applied Chemistry, Vol. 10, Nr. 4 (1960).Google Scholar
  21. [21]
    Roll, F.: Materials for Structural Models. ASCE, Vol. 94, Nr. ST6, 1353–1381 (June 1968).Google Scholar
  22. [22]
    Ross, A. D.: The Effects of Creep on Instability and Indeterminacy by Plastic Models. The Structural Engineering, London (August 1946).Google Scholar
  23. [23]
    Rowe, R. E., Base, G. D.: Model Analysis and Testing as a Design Tool. Proceedings, Institution of Civil Engineers, London, Vol. 33, 183–199 (1966).Google Scholar
  24. [24]
    Russell, J. J., Blakey, F. A.: Physical and Mechanical Properties of One-Cast Gypsum Plaster: Plaster AB/2. Australian Journal of Applied Science, Vol. 7 (1956).Google Scholar
  25. [25]
    Sabnis, G. M., White, R. N.: A Gypsum Mortar for Small-scale Models. ACI Journal, Proceedings, Vol. 64, Nr. 11, 767–774 (November 1967).Google Scholar
  26. [26]
    Saucier, K. L.: Development of Material for Modeling Rock. Miscellaneous Paper Nr. 6, 934, U.S. Army, Engineer Waterways Experiment Station, Vicksburg, Miss. (October 1967).Google Scholar
  27. [27]
    Serafim, L., Da Costa, P.: Methods and Materials for the Study of the Weight Stresses in Dams by Means of Models. L. N. E. C., Bulletin Nr. 154, Lisbon (1963).Google Scholar
  28. [28]
    Simonds, A. M.: Construction of the Plaster and Celite Models of Hoover Dam. Bur. Reclamation Techn. Nr. 306 (1932).Google Scholar
  29. [29]
    Swaminathan, K. W., Prabhakara, M. K.. Vermiculite for the Preparation of Models for the Analysis of Concrete Structures. Indian Concrete Journal, Bombay, Vol. 38, Nr. 1, 6–10 (January 1964).Google Scholar
  30. [30]
    White, R. N., Sabnis, G. N.: Size Effects in Gypsum Mortars. Journal of Materials, Vol. 3, Nr. 1, 163–177 (March 1968).Google Scholar

Copyright information

© Springer-Verlag Wien 1973

Authors and Affiliations

  • Emanuele Fumagalli
    • 1
  1. 1.Istituto Sperimentale Modelli e Strutture (ISMES)BergamoItaly

Personalised recommendations