Principles of Similitude

  • Emanuele Fumagalli


According to the principles of mechanics, having acquired the concept of “quantity”, if we wish to define the sum of two homogeneous quantities it is necessary to introduce the concept of “magnitude” as the ratio between the quantity under consideration and another one, homogeneous to it, chosen as unity. We define a “dimensional system” as the whole set of derived quantities whose units can be obtained from certain predetermined “fundamental” units. Among the various dimensional systems we mention those of:

geometry, where all the quantities can be derived from one fundamental quantity represented by the length L;

kinematics, where all the quantities can be derived from those of length L and time T;

statics, where all the quantities can be derived from those of length L and force P, or (see 1.4) length L and specific force;

mechanics in general, in which all the quantities can be derived from the above three fundamental ones.


Rheological Model Specific Force Fundamental Quantity Nuclear Reactor Pressure Vessel Geomechanical Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Arountiounian, N.: Applications de la théorie du fluage. Paris: Eyrolles. 1957.Google Scholar
  2. [2]
    Beaujoint, N.: Similitude et théorie des modèles. Rilem, Bulletin Nr. 7, 14–39, Paris (June 1960).Google Scholar
  3. [3]
    Bertrand, J.: Note sur la similitude en mécanique. Journal de l’Ecole Polytechnique, t. XIX, Cahier XX XII, 1848.Google Scholar
  4. [4]
    Bonvalet, M.: La similitude des maquettes en élasticimétrie. Exemples d’application à deux ouvrages d’art. Mémoire du G. A. M. A. C. (February 1954).Google Scholar
  5. [5]
    Borges, J. F.: Statistical Theories of Structural Similitude. Rilem, Bulletin Nr. 7, 59–67, Paris (June 1960).Google Scholar
  6. [6]
    Borges, J. F., Arga, L. J.: Crack and Deformation Similitude in Reinforced Concrete. Rilem Bulletin Nr. 7, 79–90, Paris (June 1960).Google Scholar
  7. [7]
    Bridgman, P. W.: Dimensional Analysis. Yale University Press. 1952Google Scholar
  8. [8]
    Duncan, W. J.: Physical Similarity and Dimensional Analysis. London: Arnold 1953.MATHGoogle Scholar
  9. [9]
    Esnault Pelterie, R.: L’analyse dimensionnelle. Paris: Gauthier-Villars; Lausanne: Ed. Rouge. 1946.Google Scholar
  10. [10]
    Fumagalli, E.: Model Simulation of Rock Mechanics Problems. Rock Mechanics in Engineering Practice (Stagg-Zienkiewicz, eds.). London: J. Wiley. 1968.Google Scholar
  11. [11]
    Fumagalli, E.: Caratteristiche di resistenza dei conglomerati cementizi per stati di compressione pluriassiale. Ismes, Bulletin Nr. 30 (October 1965).Google Scholar
  12. [12]
    Gabrielli, G.: Le esperienze su modelli e le leggi di similitudine. Ingegneria Meccanica IV, 1955, 2.Google Scholar
  13. [13]
    Ghaswala, S. K.: Model and Analogies in Structural Engineering. Civil Engineering and Public Works Review (January—June, 1952 ).Google Scholar
  14. [14]
    Jaeger, J. C., Cook, N. G. W.: Fundamentals of Rock Mechanics. London: Methuen. 1969.Google Scholar
  15. [15]
    Jasiewicz, J.: Applications of Dimensional Analysis Methods to Civil Engineering Problems. Civil Engineering and Public Works Review, London, Vol. 58, Nr. 686, 1125–1128 (September 1953); Nr. 687,1270–1280 (October 1963); Nr. 688,1409–1410 (November 1963); Nr. 689, 1547–1549 (December 1963).Google Scholar
  16. [16]
    Mattock, A. H.: Structural Model Testing — Theory and Applications. Journal, PCA Research and Development Laboratories, Vol. 4, Nr. 3, 12–13 (September 1962).Google Scholar
  17. [17]
    McHenry, D., Kami, J.: Strength of Concrete under Combined Tensile and Compressive Stress. ACI Journal, Proceedings, Vol. 54, Nr. 10, 829–840 (April 1958).Google Scholar
  18. [18]
    Murphy, G.: Similitude in Engineering. New York: Ronald Press. 1950.Google Scholar
  19. [19]
    Nowacki, W.: Théorie du fluage. Paris: Eyrolles. 1965.Google Scholar
  20. [20]
    Oberti, G.: Sulla valutazione del coefficiente globale di sicurezza di una struttura mediante esperienze su modelli. Ismes, Bulletin Nr. 2 (June 1954).Google Scholar
  21. [21]
    Oberti, G.: Large Scale Model Testing of Structures outside the Elastic Limit. Ismes, Bulletin Nr. 12 (April 1959).Google Scholar
  22. [22]
    Oberti, G., Lauletta, E.: Evaluation Criteria for Factors of Safety. Model Test Results. Ismes, Bulletin Nr. 25 (October 1964).Google Scholar
  23. [23]
    Pistolesi, E.: Omogeneità, similitudine, modelli. Questioni di matematica applicata, Collana CNR. Bologna: Zanichelli. 1940.Google Scholar
  24. [24]
    Pletta, D. H., Frederick, D.: Experimental Analysis. Proceedings ASCE, Vol. 79 (July 1953).Google Scholar
  25. [25]
    Somerville, G.: The Behaviour and Simulation of Concrete. Presented to the Joint British Committee for Stress Analysis at a Meeting entitled: The Behaviour and Simulation of Engineering Materials. University College, London (January 2, 1967 ).Google Scholar
  26. [26]
    Templin, R. L.: Tests of Engineering Structures and their Models. Transactions, ASCE, Vol. 102, 1211–1225 (1937).Google Scholar
  27. [27]
    Wilbur, J. B., Norris, C. H.: Structural Model Analysis. Handbook of Experimental Stress Analysis. New York: J. Wiley. 1950.Google Scholar
  28. [28]
    Wright, J.: Use of Models in Structural Analysis. Engineering (London), Vol. 175, Nr. 4558, 110–712 (June 5, 1953); Nr. 4559, 741–743 (June 12, 1953 ).Google Scholar
  29. [29]
    Zia, P., Van Horn, D. A., White, R. N.: Principles of Model Analysis. Models of Concrete Structures, Special Publication, Nr. 24. Detroit: American Concrete Institute. 1970.Google Scholar

Copyright information

© Springer-Verlag Wien 1973

Authors and Affiliations

  • Emanuele Fumagalli
    • 1
  1. 1.Istituto Sperimentale Modelli e Strutture (ISMES)BergamoItaly

Personalised recommendations