Advertisement

Relations between Cortical DC Shifts and Membrane Potential Changes of Cortical Neurons Associated with Seizure Activity

  • E.-J. Speckmann
  • H. Caspers
  • R. W. Janzen

Abstract

It is well established that seizure activity of the cerebral cortex is accompanied by slow potential changes which have been labelled as “steady” or “DC” potential shifts. With generalized seizure discharges or direct recordings from an active focus, these potential deviations are usually surface-negative in polarity and finally turn over to a positive deflection which corresponds to the post-ictal silent period (for references see O’Leary and Goldring 1964, Caspers and Speckmann 1969, Gumnit et al. 1970).

Keywords

Membrane Potential Seizure Activity Pyramidal Tract Cortical Surface Potential Shift 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ayala, G. F., H. Matsumoto, and R. J. Gumnit: Excitability changes and inhibitory mechanisms in neocortical neurons during seizures. J. Neurophysiol. 33, 73–85 (1970).PubMedGoogle Scholar
  2. Gaspers, H.: Ober die Beziehungen zwischen Dendritenpotential und Gleichspan- nung an der Hirnrinde. Pflügers Arch. ges. Physiol. 269, 157–181 (1959).Google Scholar
  3. Gaspers, H. and W. Simmich: Cortical DC shifts associated with seizure activity. Proceedings of the international Symposium on comparative and cellular pathophysiology of epilepsy. Excerpta Medica International Congress Series, No. 124, 151–162 (1966).Google Scholar
  4. Gaspers, H. and E.-J. Speckmann: DC potential shifts in paroxysmal states. In: Jasper, H. H., A. A. Ward, and A. Pope (eds.), Basic mechanisms of the epilepsies, pp. 375–388. Boston: Little, Brown & Co. 1969.Google Scholar
  5. Castellucci, V. F., and S. Goldring: Contribution to steady potential shifts of slow depolarization in cells presumed to be glia. Electroenceph. clin. Neurophysiol. 28, 109–118 (1970).Google Scholar
  6. Creutzfeldt, O., H. D. Lux, and S. Watanabe: Relations between EEG phenomena and potentials of single cortical cells. I. Evoked responses after thalamic and epicortical stimulation. Electroenceph. clin. Neurophysiol. 20,1–18 (1966 a).Google Scholar
  7. Creutzfeldt, O., H. D. Lux, and S. Watanabe: Relations between EEG phenomena and potentials of single cortical cells. II. Spontaneous and convulsoid activity. Electroenceph. clin. Neurophysiol. 20,19–37 (1966 b).Google Scholar
  8. Dichter, M., and W. A. Spencer: Penicillin-induced interictal discharges from the cat hippocampus. I. Characteristics and topographical features. J. Neurophysiol. 32,649–662 (1969 a).Google Scholar
  9. Dichter, M., and W. A. Spencer: Penicillin-induced interictal discharges from the cat hippocampus. II. Mechanisms underlying origin and restriction. J. Neurophysiol. 32,663–687 (1969 b).Google Scholar
  10. Ferguson, J. H., and H. H. Jasper: Laminar DC studies of acetylcholine-activated epileptiform discharge in cerebral cortex. Electroenceph. clin. Neurophysiol. 30, 377–390 (1971).Google Scholar
  11. Glötzner, F., und O.-J. Grösser: Membranpotential und Entladungsfolgen corticaler Zellen, EEG und corticales Bestandpotential bei generalisierten Krampfanfällen. Arch. Psychiat. Nervenkr. 210, 313–339 (1968).PubMedCrossRefGoogle Scholar
  12. Grossman, R. G., and T. Hampton: Depolarization of cortical glial cells during electrocortical activity. Brain Res. 11, 316–324 (1968).PubMedCrossRefGoogle Scholar
  13. Gumnit, R. J., H. Matsumoto, and C. Vasconetto: DC activity in the depth of an experimental epileptic focus. Electroenceph. clin. Neurophysiol. 28, 333–339 (1970).Google Scholar
  14. Humphrey, D. R.: Re-analysis of the antidromic cortical response. I. Potentials evoked by stimulation of the isolated pyramidal tract. Electroenceph. clin. Neurophysiol. 24, 116–129 (1968).Google Scholar
  15. Klee, M. R.: Different effects on the membrane potential of motor cortex units after thalamic and reticular stimulation. In: PURPURA, D. P., and M. D. YAHR (eds.), The Thalamus, pp. 287–317. New York-London: Columbia University Press. 1966.Google Scholar
  16. Klee, M. R., K. Offenloch, and J. Tigges: Cross-correlation analysis of electroencephalographic potentials and slow membrane transients. Science 147, 519–521 (1965).PubMedCrossRefGoogle Scholar
  17. Kuffler, S. W., J. G. Nicholls, and R. K. Orkand: Physiological properties of glial cells in the central nervous system of amphibia. J. Neurophysiol. 29, 768–787 (1966).PubMedGoogle Scholar
  18. Loeschcke, H. H.: Über den Einfluß von CO, auf die Bestandpotentiale der Hirnhäute. Pflügers Arch. ges. Physiol. 262,532–536 (1955/56).Google Scholar
  19. Loeschcke, H. H.: DC Potentials between CSF and Blood. In: SIESjö, B. K., and S. C. SORENSEN (eds.), Ion homeostasis of the brain (Alfred Benton Symposium III), pp. 77–96. Copenhagen: Munksgaard. 1971.Google Scholar
  20. Matsumoto, H., and C. Ajmone Marsan: Cortical cellular phenomena in experimental epilepsy: interictal manifestations. Exptl. Neurol. 9, 286–304 (1964 a).Google Scholar
  21. Matsumoto, H., and C. Ajmone Marsan: Cortical cellular phenomena in experimental epilepsy: ictal manifestations. Exptl. Neurol. 9, 305–326 (1964 b).Google Scholar
  22. Matsumoto, H., G. F. Ayala, and R. J. Gumnit: Neuronal behavior and triggering mechanism in cortical epileptic focus. J. Neurophysiol. 32, 688–703 (1969).PubMedGoogle Scholar
  23. O’leary, J. L., and S. Goldring: DC potentials of the brain. Physiol. Rev. 44, 91–125 (1964).PubMedGoogle Scholar
  24. Orkand, R. K., J. G. Nicholls, and S. W. Kupfler: Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia. J. Neurophysiol. 29, 788–806 (1966).PubMedGoogle Scholar
  25. Prince, D. A.: The depolarization shift in “epileptic” neurons. Exptl. Neurol. 21, 467–485 (1968).CrossRefGoogle Scholar
  26. Prince, D. A.: Electrophysiology of “epileptic” neurons: Spike generation. Electroenceph. clin. Neurophysiol. 26, 476–487 (1969).Google Scholar
  27. Prince, D. A. and K. J. Futamachi: Intracellular recordings from chronic epileptogenic foci in the monkey. Electroenceph. clin. Neurophysiol. 29, 496–510 (1970).Google Scholar
  28. Purpura, D. P., J. G. Mcmurtry, C. F. Leonard, and A. Malliani: Evidence for dendritic origin of spikes without depolarizing prepotentials in hippocampal neurons during and after seizure. J. Neurophysiol. 29, 954–979 (1966).PubMedGoogle Scholar
  29. Rall, W.: Distinguishing theoretical synaptic potentials computed for different somadendritic distributions of synaptic input. J. Neurophysiol. 30,1138–1168 (1967 a).Google Scholar
  30. Rall, W.,R. E. Burke, T. G. Smith, P. G. Nelson, and K. Frank: Dendritic location of synapses and possible mechanisms for the monosynaptic EPSP in motoneurons. J. Neurophysiol. 30,1169–1193 (1967 b).Google Scholar
  31. SOMJEN, G. G.: Evoked sustained focal potentials and membrane potential of neurons and of unresponsive cells of the spinal cord. J. Neurophysiol. 33, 562–582 (1970).PubMedGoogle Scholar
  32. Speckmann, E.-J., H. Caspersund R. W. Janzen: Reaktionen spinaler Moto-neurone bei supraspinal induzierten Myoklonien. Z. EEG-EMG 2, 49–53 (1971)Google Scholar
  33. Sugaya, E., S. Goldring, and J. L. O’leary: Intracellular potentials associated with direct cortical response and seizure discharge in cat. Electroenceph. clin. Neurophysiol. 17, 661–669 (1964).Google Scholar
  34. Tschirgi, R. D., and J. L. Taylor: Slowly changing bioelectric potentials associated with the blood-brain barrier. Amer. J. Physiol. 195, 7–22 (1958).PubMedGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1972

Authors and Affiliations

  • E.-J. Speckmann
    • 1
  • H. Caspers
    • 1
  • R. W. Janzen
    • 1
  1. 1.Institute of PhysiologyUniversity of MünsterGermany

Personalised recommendations