Neuronal Correlates of the Visual Evoked Response and Disinhibition in the Visual Cortex during Flicker Stimulation

  • U. Kuhnt
Conference paper


The hypothesis was put forward more than 20 years ago that postsynaptic potentials (PSPs) might be the generators of the surface EEG (Bremer 1949, Chang and Kaada 1950, Eccles 1951). In the visual cortex, temporal relationships between the evoked response to a flash of light recorded from the surface (VEP) and extracellularly were reported (Fromm and Bond 1967, Dill et al. 1968). A close correspondence between evoked spike activity and the positive wave of the VEP was found as well as a marked reduction of the spike activity during the negative wave recorded from the surface. Different results from intracellular recordings to light stimulation were reported by Crutzfeldt et al. (1969). They found a correspondence between the positive wave of the VEP and the evoked inhibitory postsynaptic potential (IPSP). With electrical stimulation of the specific afferent pathway the relationship between the evoked cellular potential and the surface potential becomes clearer: here the negative wave of the VEP runs parallel with the evoked IPSP (Watanabe et al. 1966).


Visual Cortex Light Flash Light Stimulation Positive Wave Negative Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bickford, R. G., and D. W. Klass: Sensory precipitation and reflex mechanisms. In: Jaspep, H. H., A. A. Ward, and A. Pope (eds.), Basic mechanisms of the epilepsies, pp. 543–564. Boston: Little, Brown & Co. 1969.Google Scholar
  2. Bishop, G. H., and M. H. Clare: Sites of origin of electrical potentials in striate cortex. J. Neurophysiol. 15, 201–220 (1952).PubMedGoogle Scholar
  3. Bremer, F.: Considérations sur l’origine et la nature des “ondes” cérébrales. Electroenceph. clin. Neurophysiol. 1, 177–193 (1949).Google Scholar
  4. Caspers, H.: Über die Beziehung zwischen Dendritenpotential und Gleichspannung an der Hirnrinde. Pflügers Arch. ges. Physiol. 269, 157–181 (1959).Google Scholar
  5. Chang, H. T., and B. Kaada: Analysis of primary response of visual cortex to optic nerve stimulation in cats. J. Neurophysiol. 13, 305–318 (1950).Google Scholar
  6. Creutzfeldt, O. D., A. Rosina, M. ITo, and W. Probst: Visual evoked response of single cells and of the EEG in primary visual area of the cat. J. Neurophysiol. 32, 127–139 (1969).PubMedGoogle Scholar
  7. Denney, D., and J. M. Brookhart: The effects of applied polarization on evoked electrocortical waves in cat. Electroenceph. clin. Neurophysiol. 14, 885–897 (1962).Google Scholar
  8. Dill, R. C., E. Vallecalle, and M. Verzeano: Evoked potentials, neuronal activity and stimulus intensity in the visual system. Physiology and Behavior 3, 797–801 (1968).CrossRefGoogle Scholar
  9. Eccles, J. C.: Interpretations of action potentials evoked in the cerebral cortex. Electroenceph. clin. Neurophysiol. 3, 449–464 (1951).Google Scholar
  10. Eccles, J. C.:Excitatory and inhibitory mechanisms in brain. In JASPER, H. H., A. A. WARD, and A. POPE (eds.), Basic mechanisms in the epilepsies, pp. 229–252. Boston: Little, Brown & Co. 1969.Google Scholar
  11. Fromm, G. H., and H. W. Bond: Slow changes in the electrocorticogram and the activity of cortical neurons. Electroenceph. clin. Neurophysiol. 17, 520–523 (1964).Google Scholar
  12. Fromm, G. H., and H. W. Bond:The relationship between neuron activity and cortical steady potentials. Electroenceph. clin. Neurophysiol. 22, 159–166 (1967).Google Scholar
  13. Garey, L. J.: The termination of thalamo-cortical fibres in the visual cortex of the cat and monkey. J. Physiol. 210, 15P (1970).PubMedGoogle Scholar
  14. Garey, L. J.:A light and electron microscopic study of the visual cortex of the cat and monkey. Proc. roy. Soc. (Lond.) B 179, 21–40 (1971).CrossRefGoogle Scholar
  15. Garey, L. J.and T. P. S. Powell: An experimental study of the termination of the lateral geniculo-cortical pathway in the cat and monkey. Proc. roy. Soc. (Lond.) B 179, 41–63 (1971).CrossRefGoogle Scholar
  16. Gastaut, H., J. Roger, and Y. Gastaut: Les formes éxperimentales de l’épilepsie humaine. Rev. neurol. 80, 161–183 (1948).Google Scholar
  17. Grüsser, O. J., and C. Rabelo: Die Wirkung von Flimmerreizen mit Lichtblitzen an einzelnen corticalen Neuronen. I. Int. Congr. Neurol. Sci. Vol. III: IV. Int. EEG congress Brussels 1957, pp. 371–375. London: Pergamon Press. 1959.Google Scholar
  18. Grüsser, O. J., and C. Rabelo: Reaktionen einzelner retinaler Neurone auf Lichtblitze. I. Einzelblitze und Lichtblitze wechselnder Frequenz. Pflügers Arch. ges. Physiol. 265, 501–525 (1958).CrossRefGoogle Scholar
  19. Jung, R., and J. F. Tönnies: Hirnelektrische Untersuchung über Entstehung und Erhaltung von Krampfentladungen. Arch. Psychiat. Nervenkr. 185, 701–735 (1950).PubMedCrossRefGoogle Scholar
  20. Kuhnt, U., and O. D. Creutzfeldt: Decreased postsynaptic inhibition in the visual cortex during flicker stimulation. Electroenceph. clin. Neurophys. 30, 79–82 (1971).Google Scholar
  21. Nacimiento, A. C., H. D.lux, and O. D. Creutzfeldt: Postsynaptisdle Potentiale an Nervenzellen des motorischen Cortex nach elektrischer Reizung spezifischer und unspezifischer Thalamuskerne. Pflügers Arch. 281, 152–169 (1964).CrossRefGoogle Scholar
  22. Otsuka, R., and R. Hassler: Ober Aufbau und Gliederung der corticalen Sehsphäre bei der Katze. Arch. Psychiat. Nervenkr. 203, 212–234 (1962).PubMedCrossRefGoogle Scholar
  23. Phillips, C. G.: Some properties of pyramidal neurones of the motor cortex. In: WOLSTENHOLME, G. E. W., and M. O’CONNOR (eds.), The nature of sleep, pp. 4–24. ( Ciba Symposium.) London: Churchill. 1961.Google Scholar
  24. Purpura, D. P., and J. G. Mcmurtry: Intracellular activities and evoked potential changes during polarization of motor cortex. J. Neurophysiol. 28, 166–185 (1965).PubMedGoogle Scholar
  25. Purpura, D. P., and J. G. Mcmurtry,R. J. Shofer, and F. S. Musgrave: Cortical intracellular potentials during augmenting and recruiting responses. J. Neurophysiol. 27, 133–151 (1964).PubMedGoogle Scholar
  26. Szentagothai, L. J.: The use of degeneration methods in the investigation of short neuronal connection. In: SINGER, M., and J. P. ScHADÉ (eds.), Progr. in Brain Res., Vol. 14, pp. 1–32. Amsterdam: Elsevier. 1965.Google Scholar
  27. Widén, L., and C. Ajmone Marsan: Unitary analysis of the response elicited in the visual cortex of the cat. Arch. ital. Biol. 98, 248–274 (1960).Google Scholar
  28. Watanabe, S., M. Konishi, and O. D. Creutzfeldt: Postsynaptic potentials in the cats visual cortex following electrical stimulation of afferent pathways. Exp. Brain Res. 1, 272–283 (1966).PubMedGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1972

Authors and Affiliations

  • U. Kuhnt
    • 1
  1. 1.Abteilung NeurobiologieMax-Planck-Institut für Biophysikalische ChemieGöttingenGermany

Personalised recommendations