Skip to main content

Randomness and Synchrony in the Generation of the Electroencephalogram

  • Conference paper
Synchronization of EEG Activity in Epilepsies

Abstract

The question whether the EEG is dependent upon subcortical inputs or control has never been completely clarified. Burns (1950, 1951) demonstrated that cortical slabs which have been completely undercut are devoid of spontaneous activity and respond to direct shocks only by brief bursts of activity. However, there have also been conflicting experiments in which some residual activity appeared to have remained in undercut cortex (Kristiansen and Courtois 1949, Echlin et al. 1952, Henry and Scoville 1952, Ingvar 1955), although the possibility that this residual activity may be in the nature of injury discharge cannot be ignored. Essentially the same considerations apply to recordings from the frog brain. Gerard was able to record slow potential activity from small fragments of the olfactory bulb of the frog (Gerard 1936, Gerard and Libet 1940). Such potentials can indeed be recorded but, whereas the amplitude of EEG recorded from the intact frog brain even under the best of conditions does not appear to exceed 20–30, μV, the potentials recorded from small fragments of the brain are of the order of 200 μV and very significantly differ in their appearance from the normal EEG of the frog. (Indeed this seizure-like appearance is evident in the original records published by Gerard.) Thus the potentials recorded from the isolated olfactory lobe in the frog unquestionably represent bioelectric activity, but it seems much more dubious that these potentials may legitimately be identified as “EEG”.

This research has been supported by NIH grants NS-8012 and -8498, and by NSF grant GB-30498.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersen, P., and S. A. Andersson: Physiological Basis of the Alpha Rhythm. New York: Appleton-Century-Crofts. 1968.

    Google Scholar 

  • Andersen, P., and T. A. Sears: The role of inhibition in phasing of spontaneous thalamocortical discharge. J. Physiol. 173, 459–480 (1964).

    PubMed  CAS  Google Scholar 

  • Anninos, P. A.: Dynamics and function of neural structures. Doctoral dissertation, Syracuse University, Syracuse, N.Y., 1969.

    Google Scholar 

  • Anninos, P. A.: Cyclic modes in probabilistic neural nets. Submitted for publication (1971).

    Google Scholar 

  • Anninos, P. A., and R. Elul: A neural net model of the alpha rhythm. In preparation (1972).

    Google Scholar 

  • Blankenship, J.: Action of tetrodotoxin on spinal motoneurons of the cat. J. Neurophysiol. 31, 186–194 (1968).

    PubMed  CAS  Google Scholar 

  • Burns, B. D.: Some properties of the cat’s isolated cerebral cortex. J. Physiol. 111, 50–68 (1950).

    PubMed  CAS  Google Scholar 

  • Burns, B. D.: Some properties of isolated cerebral cortex in the unanesthetized cat. J. Physiol. 112, 156–175 (1951).

    PubMed  CAS  Google Scholar 

  • Cramer, E. G. H.: The Elements of Probability Theory, pp. 168–171. New York: Wiley. 1955.

    Google Scholar 

  • Creutzfeldt, O. D., J. M. Fuster, H. D. Lux, und A. C. Nacimiento: Experimenteller Nachweis von Beziehungen zwischen EEG-Wellen und Aktivität corticaler Nervenzellen. Naturwissenschaften 51, 166–167 (1964).

    Article  Google Scholar 

  • Creutzfeldt, O. D., S. Watanabe, and H. D. Lux: Relations between EEG phenomena and potentials of single cortical cells, II. Spontaneous and convulsoid activity. Electroenceph. clin. Neurophysiol. 20, 19–37 (1966).

    CAS  Google Scholar 

  • Creutzfeldt, O. D., H. Rosina, M. Ito, and W. Probst: Visual evoked response of single cells and of the EEG in primary visual area of the cat. J. Neurophysiol. 32, 127–139 (1969).

    PubMed  CAS  Google Scholar 

  • Colomo, F., and S. D. Erulkar: Miniature synaptic potentials at frog spinal neurones in the presence of tetrodotoxin. J. Physiol. (London) 199, 205–221 (1968).

    CAS  Google Scholar 

  • Dichter, M., and W. A. Spencer: Penicillin-induced interictal discharges from the cat hippocampus, I. Characteristics and topographical features. J. Neurophysiol. 5, 649–663 (1969).

    Google Scholar 

  • Echlin, F. A., V. Arnett, and J. Zoll: Paroxysmal high voltage discharges from isolated and partially isolated human and animal cerebral cortex. Electroenceph. clin. Neurophysiol. 4, 147–164 (1952).

    CAS  Google Scholar 

  • Elul, R.: Dipoles of spontaneous activity in the cerebral cortex. Exptl. Neurol. 6, 285–299 (1962).

    Article  Google Scholar 

  • Elui., R.: Specific site of generation of brain waves. The Physiologist 7, 125 (1964).

    Google Scholar 

  • Elui., R.: Statistical mechanisms in generation of the EEG. Progr. Biomed. Eng. 1, 131–150 (1966).

    Google Scholar 

  • Elui., R.: Brain waves: Intracellular recordings and the origin of the EEG. In: Data Acquisition and Processing in Biology and Medicine, Vol. V, pp. 93–115. Oxford: Pergamon Press. 1968.

    Google Scholar 

  • Elui., R.: Gaussian behavior of the electroencephalogram: Changes during performance of mental task. Science 164, 328–331 (1969).

    Article  Google Scholar 

  • Elui., R.: Effect of tetrodotoxin on spontaneous electrical activity of the cerebral cortex: Intracellular evidence for subcortical control of the electroencephalogram. Submitted for publication (1971).

    Google Scholar 

  • Elui., R.: Cellular sources of the EEG, II. Summation of unitary potentials in the gross electrocorticogram. Submitted for publication (1972).

    Google Scholar 

  • Elui., R., and W. R. Adey: Cellular sources of the EEG, I. Neuronal mechanisms. Submitted for publication (1972).

    Google Scholar 

  • Gerard, R. W.: Factors controlling brain potentials. Cold Spring Harbor Symp. Quant. Biol. 4, 292–298 (1936).

    CAS  Google Scholar 

  • Gerard, R. W., and B. Libet: The control of normal and “convulsive” brain potentials. Amer. J. Psychiat. 96, 1125–1151 (1940).

    CAS  Google Scholar 

  • Goodman, N. R.: On the joint estimation of the spectra, cospectrum and quandrature spectrum of a two-dimensional stationary Gaussian process. Ph. D. dissertation, Princeton University, 1957.

    Google Scholar 

  • Hafemann, D. R., A. Costin, and T. J. Tarry: Neurophysiological effects of tetrodotoxin in lateral geniculate body and dorsal hippocampus. Brain Res. 12, 363–373 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Hafemann, D. R., and A. H. Houston: Specificity of binding of radioactive tetrodotoxin. Fed. Proc. 30 (2), 349 (1971).

    Google Scholar 

  • Henry, C. E., and W. B. Scoville: Suppression-burst activity from isolated cerebral cortex in man. Electroenceph. clin. Neurophysiol. 4, 1–22 (1952).

    Article  PubMed  CAS  Google Scholar 

  • Hubbard, J. E., D. Stenhouse, and R. M. Eccles: Origin of synaptic noise. Science 157, 330–331 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Ingvar, D. H.: Electrical activity of isolated cortex in unanesthetized cat with intact brain stem. Acta physiol. stand. 33, 151–168 (1955).

    Article  CAS  Google Scholar 

  • Jasper, H., and C. Stefanis: Intracellular oscillatory rhythms in pyramidal tract neurones in the cat. Electroenceph. clin. Neurophysiol. 18, 541–553 (1965).

    CAS  Google Scholar 

  • Kristiansen, D., and G. Courtois: Rhythmic electrical activity from isolated cerebral cortex. Electroenceph. clin. Neurophysiol. 1, 265–272 (1949).

    CAS  Google Scholar 

  • Li, C. L., and H. Jasper: Micro-electrode studies of the electrical activity of the cerebral cortex in the cat. J. Physiol. 121, 117–140 (1953).

    PubMed  CAS  Google Scholar 

  • Matsumoto, H., and C. Ajmone Marsan: Cortical cellular phenomena in experimental epilepsy: Interictal manifestations. Exp. Neurol. 9, 286–304 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto, H., Cortical cellular phenomena in experimental epilepsy: Ictal manifestations. Exp. Neurol. 9, 305–326 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto, H., G. F. Ayala, and R. J. Gumnit: Neuronal behavior and triggering mechanism in cortical epileptic focus. J. Neurophysiol. 5, 688–704 (1969).

    Google Scholar 

  • Narahashi, T., J. W. Moore, and W. R. Scott: Tetrodotoxin blockage of sodium conductance increase in lobster giant axons. J. gen. Physiol. 47, 965–974 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Pollen, D. A., and C. Ajmone Marsan: Cortical inhibitory postsynaptic potentials and strychninization. J. Neurophysiol. 28, 342–358 (1965).

    PubMed  CAS  Google Scholar 

  • Prince, D. A.: Modification of focal cortical epileptiform discharge by afferent influences. Epilepsia 7, 181–201 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Prince, D. A.: Electrophysiology of “epileptic” neurons. Electroenceph. clin. Neurophysiol. 23, 83–84 (1967).

    CAS  Google Scholar 

  • Prince, D. A.: The depolarization shift in “epileptic” neurons. Exptl. Neurol. 21, 467–485. (1968).

    Article  CAS  Google Scholar 

  • Shannon, C. E.: A mathematical theory of communications, Part I. Bell Syst. Tech. J. 27, 379–423 (1948a).

    Google Scholar 

  • Prince, D. A.: A mathematical theory of communications, Part II. Bell Syst. Tech. J. 27, 623–656 (1948b).

    Google Scholar 

  • Verzeano, M., and K. Negishi: Neuronal activity in cortical and thalamic networks. A study with multiple microelectrodes. J. gen. Physiol. 43, suppl., 177–195 (1960).

    Article  PubMed  Google Scholar 

  • Walter, D. O.: Spectral analysis for electroencephalograms: Mathematical determination of neurophysiological relationships from records of limited duration. Exptl. Neurol. 8, 155–181 (1963).

    Article  CAS  Google Scholar 

  • Walter, D. O., and W. R. Adey: Analysis of brain-wave generators as multiple statistical time series. IEEE Trans. Bio. Med. Engin. BME-12, 8–13 (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1972 Springer-Verlag/Wien

About this paper

Cite this paper

Elul, R. (1972). Randomness and Synchrony in the Generation of the Electroencephalogram. In: Petsche, H., Brazier, M.A.B. (eds) Synchronization of EEG Activity in Epilepsies. Springer, Vienna. https://doi.org/10.1007/978-3-7091-8306-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-8306-9_6

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-8308-3

  • Online ISBN: 978-3-7091-8306-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics