Advertisement

Studies on Extracellular Potentials Generated by Synaptic Activity on Single Cat Motor Cortex Neurons

  • W. Raabe
  • H. D. Lux

Abstract

When intracellular recordings from cortical neurons became available it was obvious to most workers in this field that a relationship exists especially between the postsynaptic potentials and the potential recorded from the cortical surface (Kandel and Spencer 1961, Li and Chou 1962, Lux and Klee 1962, Creutzfeldt et al. 1964, Pollen 1964, Purpura et al. 1964, Jasper and Stefanis 1965) in accord-ance with an earlier hypothesis of Eccles (1951). In the neocortex, the postsynaptic activity of pyramidal tract (PT) cells was assumed to govern the generation of the electrocorticogram and special consideration in this respect was given to the localization of excitatory and inhibitory synapses on the nerve cell soma and apical dendrite (Eccles 1951, Creutzfeldt et al. 1966). In a more recent study by Humphrey (1968), evidence was presented for a causal relationship between the postsynaptic effects of synchronous recurrent activity of PT cells with the antidromically evoked surface potential. A PT cell model was proposed which rather effectively combined electrophysiological and morphological data. It allowed a quantitative interpretation of this evoked potential based on synaptic activity on single PT neurons. For a check of the model it was thought worthwhile to test experimentally to what amount synaptic currents contribute to the potential field in the extracellular adjacent surround of this neuron.

Keywords

Pyramidal Tract Synaptic Activity Cortical Surface Apical Dendrite Extracellular Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Creutzfeldt, O. D., J. M. Fuster, H. D. lux, und A. Nacimiento: Experi-menteller Nachweis zwischen EEG-Wellen und Aktivität corticaler Nervenzellen. Naturwissenschaften 51, 166–167 (1964).CrossRefGoogle Scholar
  2. CreutzfeldtO. D.,S. Watanabe, and H. D. Lux: Relations between EEG phenomena and potentials of single cortical cells. I. Evoked responses after thalamic and epicortical stimulation. Electroenceph. clin. Neurophysiol. 20, 1–18 (1966).Google Scholar
  3. Eccles, J. C.: Interpretation of action potentials evoked in the cerebral cortex. Electroenceph. clin. Neurophysiol. 3, 449–464 (1951).Google Scholar
  4. Freygang, W. H., and W. M. Landau: Some relations between resistivity and electrical activity in the cerebral cortex of the cat. J. Cell. Comp. Physiol. 45, 377–392 (1955).CrossRefGoogle Scholar
  5. Humphrey, D. R.: Re-analysis of the antidromic cortical response. II. On the contribution of cell discharge and PSPs to the evoked potentials. Electroenceph. clin. Neurophysiol. 25, 421–442 (1968).PubMedCrossRefGoogle Scholar
  6. Jasper, H. H., and C. Stefanis: Intracellular oscillatory rhythms in pyramidal tract neurons in the cat. Electroenceph. clin. Neurophysiol. 18, 541–553 (1965).Google Scholar
  7. Kandel, E. R., and W. A. Spencer: Excitation and inhibition of single pyramidalcells during hippocampal seizure. Exptl. Neurol. 4, 162–170 (1961).CrossRefGoogle Scholar
  8. Li, C.-L., and S. N. Chou: Cortical intracellular synaptic potentials and directcortical stimulation. J. Cell. Comp. Physiol. 60, 1–16 (1962).PubMedCrossRefGoogle Scholar
  9. lux, H. D.: Ammonium and chloride extrusion: Hyperpolarizing synaptic inhibition in spinal motoneurons. Science 173, 555–557 (1971).PubMedCrossRefGoogle Scholar
  10. lux,H. D. und M. R. Klee: Intrazelluläre Untersuchungen über den Einfluß hemmender Potentiale im motorischen Cortex. I. Die Wirkung elektrischer Reizung unspezifischer Thalamuskerne. Arch.-Psychiatr. Nervenkr. 203, 648–666 (1962)CrossRefGoogle Scholar
  11. lux,H. D.and D. A. Pollen: Electrical constants of neurons in the motor cortex of the cat. J. Neurophysiol. 29, 207–220 (1966).PubMedGoogle Scholar
  12. Nacimiento, A. C., H. D. luxund O. D. Creutzfeldt: Postsynaptische Potentiale von Nervenzellen des motorischen Cortex nach elektrischer Reizung spezifischer und unspezifischer Thalamuskerne. Pflüg. Arch. Ges. Physiol. 281, 152–169 (1964).CrossRefGoogle Scholar
  13. Pollen, D. A.: Intracellular studies of cortical neurons during thalamic induced wave and spike. Electroenceph. clin. Neurophysiol. 17, 398–404 (1964).Google Scholar
  14. Pollen,D.A., and H. D. Lux: Conductance changes during inhibitory postsynaptic potentials in normal and strychninized neurons. J. Neurophysiol. 29, 369–381 (1966).PubMedGoogle Scholar
  15. Purpura, D. P., R. J. Shofer, and F. S. Musgrave: Cortical intracellularpotentials during augmenting and recruiting responses. II. Patterns of synaptic activities in pyramidal and non-pyramidal tract neurons. J. Neurophysiol. 27, 133–151 (1964).PubMedGoogle Scholar
  16. Rall, W., and G. M. Shepherd: Theoretical reconstruction of field potentials and dendrodendritic synaptic interactions in olfactory bulb. J. Neurophysiol. 31, 884–915 (1968).PubMedGoogle Scholar
  17. Ramon-Moliner, H.: The histology of the postcruciate gyrus in the cat. I. Quantitative studies. J. comp. Neurol. 117, 43–62 (1961).CrossRefGoogle Scholar
  18. Sasaki, K., and S. Prelevjc: Antidromic invasion of impulses and recurrent collateral inhibition in pyramidal tract neurons. Brain Res. 17, 355–359 (1970).PubMedCrossRefGoogle Scholar
  19. Stefanis, C., and H. H. Jasper: Intracellular microelectrode studies of antidromic responses in cortical pyramidal tract neurons. J. Neurophysiol. 27,828–854 (1964).PubMedGoogle Scholar
  20. Takahashi, K.: Slow and fast groups of pyramidal tract cells and their respective membrane properties. J. Neurophysiol. 28, 908–924 (1965).PubMedGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1972

Authors and Affiliations

  • W. Raabe
    • 1
  • H. D. Lux
    • 1
  1. 1.Max-Planck-Institut für PsychiatrieMünchenGermany

Personalised recommendations