Advertisement

Generalized Spike and Wave Discharges: A Consideration of Cortical and Subcortical Mechanisms of Their Genesis and Synchronization

  • P. Gloor

Abstract

Generalized spike and wave discharge is one of the most characteristic features of the clinical electroencephalogram. In its classical, regular 3 c/sec form it represents the concomitant of a common form of generalized seizures, the absence attack, which is characterized by a very variable degree of clouding of consciousness and sometimes by minor bilateral motor and autonomic phenomena. No one looking at the electroencephalographic record of such a seizure, be he an expert or a novice, can fail to be impressed by the suddenness with which virtually simultaneously the resting pattern of the electroencephalogram is replaced by high voltage generalized, bilaterally synchronous, rhythmic spike and wave discharge. The cessation of this pattern is equally impressive and so is, often, the symmetry of the waveforms in homologous areas of the hemispheres. Even though the finer analysis of time sequences reveals some lack of perfect synchronization between various areas of the cortex (Petsche 1962), one cannot fail to be impressed by the relative synchronicity of the electrical events. This must imply that a system is being activated which is capable of phase-locking within a relatively narrow range of time-dispersion the discharges of a great number of neurons in widely disparate areas of the brain.

Keywords

Wave Activity Wave Discharge Cortical Mechanism Subcortical Grey Matter Callosal Fibre 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ajmone Marsan, C., and W. R. Lewis: Pathological findings in patients with “centrencephalic” electroencephalographic patterns. Neurol. 10, 922–930 (1960).Google Scholar
  2. Andersen, P., and J. C. Eccles: Inhibitory phasing of neuronal discharge. Nature (London) 196, 645–647 (1962).CrossRefGoogle Scholar
  3. Daly, D., J. L. Whelan, R. G. Bickford, and C. S. Maccarty: The electroencephalogram in cases of tumors of the posterior fossa and third ventricle. Electroenceph. clin. Neurophysiol. 5, 203–216 (1953).PubMedCrossRefGoogle Scholar
  4. Garretson, H., P. Gloor, and T. Rasmussen: Intracarotid amobarbital and metrazol test for the study of epileptiform discharges in man: a note on its technique. Electroenceph. clin. Neurophysiol. 21, 607–610 (1966).CrossRefGoogle Scholar
  5. Gibbs, F. A., and E. L. Gibbs: Atlas of Electroencephalography, Vol. 2. Cambridge, Mass.: Addison-Wesley Press Inc. 1952.Google Scholar
  6. Gloor, P.: Generalized cortico-reticular epilepsies. Some considerations on the pathophysiology of generalized bilaterally synchronous spike and wave discharge. Epilepsia 9, 249–263 (1968).PubMedCrossRefGoogle Scholar
  7. Gloor, P.: Neurophysiological bases of generalized seizures termed centrencephalic. In: Gastaut, H., H. Jasper, J. Bancaud, and A. Waltregny (eds.), The Physiopathogenesis of the Epilepsies, chapter 18, pp. 209–236. Springfield, Ill.: Charles C. Thomas. 1969.Google Scholar
  8. Gloor, P., O. Kalabay, and N. Giard: The electroencephalogram in diffuse encéphalopathies: electroencephalographic correlates of grey and white matter lesions. Brain 91, 779–802 (1968).CrossRefGoogle Scholar
  9. Gloor, P., T. Rasmussen, H. Garretson, and F. Maroun: Fractionized intracarotid Metrazol injection. A new diagnostic method in electroencephalography. Electroenceph. clin. Neurophysiol. 17, 322–327 (1964).CrossRefGoogle Scholar
  10. Guerrero-Figueroa, R., A. Barros, F. De Balbian Verster, and R. G. Heath: Experimental “Petit Mal” in kittens. Arch. Neurol. 9, 297–306 (1963).PubMedCrossRefGoogle Scholar
  11. Hayne, R. A., L. Belinson, and F. A. Gibbs: Electrical activity of subcortical areas in epilepsy. Electroenceph. clin. Neurophysiol. 1, 437–445 (1949).PubMedGoogle Scholar
  12. Hunter, J., and H. H. Jasper: Effects of thalamic stimulation in unanaesthetized animals. Electroenceph. clin. Neurophysiol. 1, 305–324 (1949).PubMedGoogle Scholar
  13. Jasper, H. H., and J. Droogleever-Fortuyn: Experimental studies on the functional anatomy of petit mal epilepsy. Res. Publ. Ass. Nerv. ment. Dis. 26, 272–298 (1947).Google Scholar
  14. Jung, R.: Correlation of bioelectrical and autonomic phenomena with alterations of consciousness and arousal in man. Brain Mechanisms and Consciousness, pp. 310–344. Oxford: Blackwell. 1954.Google Scholar
  15. Kaplan, H., and D. H. Ford: The brain vascular system. Amsterdam: Elsevier. 1966.Google Scholar
  16. Lennox, W. G., E. L. Gibbs, and F. A. Gibbs: Effect on the electroencephalogram of drugs and conditions which influence seizures. Arch. Neurol. Psychiat. 36, 1236–1245 (1936).Google Scholar
  17. Li, C. L., H. Jasper, and L. Henderson: The effect of arousal mechanisms on various forms of abnormality in the electroencephalogram. Electroenceph. clin. Neurophysiol. 4, 512–526 (1952).CrossRefGoogle Scholar
  18. Marcus, E. M., and C. W. Watson: Bilateral synchronous spike wave electrographic patterns in the cat. (Interaction of bilateral cortical foci in the intact, the bilateral cortico-callosal and adiencephalic preparation). Arch. Neurol. 14, 601–610 (1966).PubMedCrossRefGoogle Scholar
  19. Marcus, E. M., and C. W. Watson: Symmetrical epileptogenic foci in monkey cerebral cortex. Arch. Neurol. 19, 99–116 (1968).PubMedCrossRefGoogle Scholar
  20. Marcus, E. M., C. W. Watson and S. A. Simon: An experimental model of some varieties of petit mal epilepsy. Electrical-behavioral correlations of acute bilateral epileptogenic foci in cerebral cortex. Epilepsia 9, 233–248 (1968a).PubMedCrossRefGoogle Scholar
  21. Marcus, E. M., C. W. Watson and S. A. Simon: Behavioral correlates of acute bilateral symmetrical epileptogenic foci in monkey cerebral cortex. Brain Res. 9, 370–373 (1968b).PubMedCrossRefGoogle Scholar
  22. Penfield, W., and H. Jasper: Epilepsy and the functional anatomy of the human brain. Boston: Little, Brown & Co. 1954.Google Scholar
  23. Perot, P.: Mesencephalic-thalamic relations in wave and spike mechanisms, pp. 220. Montreal: Ph. D. Thesis, McGill University. 1963.Google Scholar
  24. Petsche, H.: Pathophysiologie and Klinik des Petit Mals. Toposkopische Untersuchungen zur Phänomenologie des Spike-Wave-Musters. Wien. Z. Nervenh. Grenzgeb. 19, 345–442 (1962).Google Scholar
  25. Pollen, D. A.: Intracellular studies of cortical neurons during thalamic induced wave and spike. Electroenceph. clin. Neurophysiol. 17, 398–404 (1964).PubMedCrossRefGoogle Scholar
  26. Pollen, D. A., P. Perot, and K. H. Reid: Experimental bilateral wave and spike from thalamic stimulation in relation to level of arousal. Electroenceph. clin. Neurophysiol. 15, 1017–1028 (1963).PubMedCrossRefGoogle Scholar
  27. Pollen, D. A., K. H. Reid, and P. Perot: Microelectrode studies of experimental 3/sec wave and spike in the cat. Electroenceph. clin. Neurophysiol. 17, 57–67 (1964).PubMedCrossRefGoogle Scholar
  28. Pollen, D. A. and P. G. Sie: Analysis of thalamic induced wave and spike by modification in cortical excitability. Electroenceph. clin. Neurophysiol. 17, 154–163 (1964).PubMedCrossRefGoogle Scholar
  29. Prince, D., and D. Farrell: “Centrencephalic” spike-wave discharges following parenteral penicillin injection in the cat. Neurol. 19, 309–310 (1969). (Abstract.)Google Scholar
  30. Rovit, R., P. Gloor, and T. Rasmussen: Intracarotid amobarbital in epilepsy. Arch. Neurol. 5, 606–626 (1961).PubMedCrossRefGoogle Scholar
  31. Stevens, J. R.: Focal abnormality in petit mal epilepsy. Neurol. 20, 1069–1076 (1970).Google Scholar
  32. Weir, B.: Spike-wave from stimulation of reticular core. Arch. Neurol. 11, 209–218 (1964).PubMedCrossRefGoogle Scholar
  33. Weir, B.: The morphology of the spike-wave complex. Electroenceph. clin. Neurophysiol. 19, 284–290 (1965).PubMedCrossRefGoogle Scholar
  34. Weir, B. and P. G. Sie: Extracellular unit activity in cat cortex during the spike-wave complex. Epilepsia 7, 30–43 (1966).PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1972

Authors and Affiliations

  • P. Gloor
    • 1
  1. 1.Montreal Neurological Institute and the Department of Neurology and NeurosurgeryMcGill UniversityMontrealCanada

Personalised recommendations