Mechanisms of Cortical Discharges in “Generalized” Epilepsies in Man

  • J. Bancaud


The stereotaxic EEG investigations in man, performed with macro-multilead electrodes (macro-SEEG) and intended to facilitate possible surgical intervention in recalcitrant cases of epilepsy, are unable to provide decisive information concerning the mechanisms of discharge synchronization. Nevertheless, the simultaneous investigation of a large number of cortical and subcortical structures implicated in the epileptic process can furnish some indications as to the site of origin and mode of propagation of critical discharges. We shall thus present several of the findings which have emerged from such studies regarding the highly controversial issue of whether the bilateral synchrony of the so-called “generalized” epilepsies is primary or secondary.


Subcortical Structure Focal Epilepsy Epileptogenic Zone Epileptogenic Focus Thalamic Stimulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bancaud, J.: Physiopathogenesis of generalized epilepsies of organic nature. In: Gastaut, H., et al. (eds.), The physiopathogenesis of the epilepsies, pp. 158–187. Springfield: Thomas. 1969.Google Scholar
  2. Bancaud, J.: Role du cortex cérébral dans les épilepsies « généralisées » d’origine organique. Apport des investigations stéréoélectroencéphalographiques (S.E.E.G.) â la discussion de la conception « centrencéphalique ». Presse Méd. 79, 669–673 (1971).PubMedGoogle Scholar
  3. Bancaud, J. et J. Talairach: La stéréo-électro-encéphalographie dans l’épilepsie. Paris: Masson. 1965.Google Scholar
  4. Bancaud, J., A. Bonis, C. Schaub, G. Szikla, and P. Morel: Information neuro-physiopathologique apportée par l’investigation fonctionelle stéréotaxique dans les épilepsies. Rev. Neurol. 100, 81–86 (1963).Google Scholar
  5. Bennett, F. E., and F. A. Gibbs: Intracarotid and intravertebral metrazol in petit mal epilepsy. Electroenceph. clin. Neurophysiol. 4, 382 (1952).Google Scholar
  6. Crain, S. M.: Electrical activity of brain tissue developing in culture. In: Jasper, H., et al. (eds.), Basic mechanisms of the epilepsies. Boston: Little, Brown & Co. 1969.Google Scholar
  7. Echlin, F. A.: The supersensitivity of chronically isolated cerebral cortex as a mechanism in focal epilepsy. Electroenceph. clin. Neurophysiol. 11, 697–722 (1959).PubMedCrossRefGoogle Scholar
  8. Gastaut, H., H. Jasper, J. Bancaud, and A. Waltregny: The physiopathogenesis of the epilepsy. Springfield: Thomas. 1969.Google Scholar
  9. Gastaut, H. and N. Pinsard: Séméiologie clinique des crises épileptiques chez l’enfant. Vie méd. 48, 865–872 (1967).Google Scholar
  10. Gastaut, H., N. Pinsard and J. Roger: Séméiologie électro-encéphalographique des crises épileptiques chez l’enfant en fonction de l’âge. Vie méd. 48, 873–878 (1967).Google Scholar
  11. Guerrero-Figueroa, R., and A. Darros: Experimental petit mal in kittens. Arch. Neurol. 9, 297–306 (1963).PubMedCrossRefGoogle Scholar
  12. Ingvar, D. H.: Reproduction of the 3/sec spike and wave EEG pattern by subcortical stimulation in cats. Acta physiol. scand. 33, 137–150 (1955).PubMedCrossRefGoogle Scholar
  13. Ingvar, D. H.: On the pathophysiology of the 3/sec spike and wave epilepsy. Electroenceph. clin. Neurophysiol. 11, 187 (1959).Google Scholar
  14. Jasper, H. H., A. A. Ward, and A. Pope (eds.), Basic mechanisms of the epilepsies. Boston: Little, Brown & Co. 1969.Google Scholar
  15. Kaada, B. R.: Somatomotor automatisms and electroencephalographic response to electrical stimulation of rhinencephalon or other structure in primate, cat and dog. Acta physiol. scand. 24, Suppl. 83 (1951).Google Scholar
  16. Kopeloff, N., J. R. Waitin, B. L. Pacella, and L. Kopeloff: The epileptogenic effect of subcortical alumina cream in the rhesus monkey. Electroenceph. clin. Neurophysiol. 1, 163–168 (1950).CrossRefGoogle Scholar
  17. Lennox, M. A., and F. Robinson: Cingulate-cerebellar mechanisms in the physiological pathogenesis of epilepsy. Electroenceph. clin. Neurophysiol. 3, 197–206 (1951).PubMedCrossRefGoogle Scholar
  18. Marcus, E. M., and S. Jacobson: An experimental model of petit mal epilepsy: electrical and behavioral correlates of acute bilateral epileptogenic foci in monkey cerebral cortex. Electroenceph. clin. Neurophysiol. 27, 735 (1969).Google Scholar
  19. Marcus, E. M. and C. W. Watson: Bilateral “epileptogenic” foci in cat cerebral cortex: mechanisms of interaction in the intact, the bilateral cortical callosal and adiencephalic preparation. Electroenceph. clin. Neurophysiol. 17, 454 (1964).Google Scholar
  20. Naquet, R., E. Balzano, and M. Poncet: The light sensitive epilepsy of Papio papio topographic study of cortico subcortical electroencephalographic paroxysmal activity. Electroenceph. clin. Neurophysiol. 24, 289 (1968).PubMedGoogle Scholar
  21. Penfield, W., and H. H. Jasper: Epilepsy and the functional anatomy of human brain. Boston: Little, Brown & Co. 1954.Google Scholar
  22. Petsche, H., P. Rappelsberger, and R. Trappl: Properties of cortical seizure potential fields. Electroenceph. clin. Neurophysiol. 29, 567–578 (1970).PubMedCrossRefGoogle Scholar
  23. Pollen, D. A., P. Perot, and K. H. Reid: Experimental bilateral wave and spike from thalamic stimulation in relation to level of arousal. Electroenceph. clin. Neurophysiol. 15, 1017–1028 (1963).PubMedCrossRefGoogle Scholar
  24. Ralston, B. L.: Cingulate epilepsy and secondary bilateral synchrony. Electroenceph. clin. Neurophysiol. 13, 591–598 (1961).PubMedCrossRefGoogle Scholar
  25. C. Ajmone Marsan: Thalamic control of certain normal and abnormal cortical rhythms. Electroenceph. clin. Neurophysiol. 8, 559–582 (1956).PubMedCrossRefGoogle Scholar
  26. Sager, O., V. Chivu, M. Moisanu et S. Basilesco: Le complexe pointe-onde obtenu chez les animaux décortiqués bilatéralement pendant l’accès convulsif métrazolique. 1. Int. Congr. Neurol. Sci. Bruxelles, 1957. Excerpta Medica, pp. 75–76.Google Scholar
  27. Sasaki, M.: The importance of subcortical nuclei in epileptic convulsion. Tohoku Med. 51, 1–13 (1955).Google Scholar
  28. Shimizu, K., S. Refsum, and F. A. Gibbs: Effect on the electrical activity of the brain of intra-arterially and intra-cerebrally injected convulsant and sedative drugs. Electroenceph. clin. Neurophysiol. 4, 141–146 (1952).PubMedCrossRefGoogle Scholar
  29. Starzl, T. E., W. T. Niemer, M. Dell, and P. R. Forgrave: Cortical and subcortical activity in experimental seizures induced by metrazol. J. Neuro-path. exp. Neurol. 12, 262–276 (1953).Google Scholar
  30. Weir, B.: Spike wave from stimulation of reticular core. Arch. Neurol. 11, 209–218 (1964).PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1972

Authors and Affiliations

  • J. Bancaud
    • 1
  1. 1.Unité de Recherches I. N. S. E. R. M.ParisFrance

Personalised recommendations