Human Scalp EEG Fields: Evoked, Alpha, Sleep, and Spike-Wave Patterns

  • D. Lehmann


Complete information about the human scalp EEG is available in the distribution of the electrical field on the scalp, and its change as a function of time. Any conventional EEG as recorded between unipolar and bipolar electrode combinations can be reconstructed from complete data of the field distributions. However, the large amount of data in recordings of field distributions demands considerable data reduction before evaluation. One strategy of data reduction is particularly challenging: a limited number of intracranial model generators, if possible only one, can be fitted to account for a given field distribution. A sequence of field distributions could thus be described by the parameters of the model generator(s) which change as a function of time.


Field Distribution Field Maximum Equipotential Line Anterior Area Occipital Electrode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bourne, J. R., D. G. Childers, and N. W. Perry: Topological characteristics of the visual evoked response in man. Electroenceph. clin. Neurophysiol. 30, 423–436 (1971).PubMedCrossRefGoogle Scholar
  2. Brazier, M. A. B.: The electrical fields at the surface of the head during sleep. Electroenceph. clin. Neurophysiol. 1, 195–204 (1949a).PubMedGoogle Scholar
  3. Brazier, M. A. B.: A study of the electrical fields on the surface of the head. Electroenceph. clin. Neurophysiol. Suppl. 2, 38–52 (1949b).Google Scholar
  4. Cooper, R., A. L. Winter, H. J. Crow, and W. G. Walter: Comparison of subcortical, cortical and scalp activity using chronically indwelling electrodes in man. Electroenceph. clin. Neurophysiol. 18, 217–228 (1965).PubMedCrossRefGoogle Scholar
  5. Deluccht, M. R., B. Garoutte, and R. B. Aird: The scalp as an electroencephalographic averager. Electroenceph. clin. Neurophysiol. 14, 191–196 (1962).CrossRefGoogle Scholar
  6. Estrin, T., and R. Uzgalis: A moving topological display of the EEG. Electroenceph. clin. Neurophysiol. 27, 658–659 (1969).PubMedGoogle Scholar
  7. Fischgold, H., H. Torubia et P. Mathis: Le champ électrique du complexe pointe-onde. Rev. Neurol. 93, 468–474 (1955).Google Scholar
  8. Garoutte, B., and R. B. Aird: Studies on the cortical pacemaker: Synchrony and asynchrony of bilaterally recorded alpha and beta activity. Electroenceph. clin. Neurophysiol. 10, 259–268 (1958).PubMedCrossRefGoogle Scholar
  9. Geisler, C. D., and G. L. Gerstein: The surface EEG in relation to its sources. Electroenceph. clin. Neurophysiol. 13, 927–934 (1961).CrossRefGoogle Scholar
  10. Kavanagh, R. N.: Localization of sources of human evoked responses. Thesis, Calif. Inst. of Technology, Pasadena, Calif., 1972.Google Scholar
  11. Lehmann, D.: Multichannel topography of human alpha EEG fields. Electroenceph. clin. Neurophysiol. 31, 439–449 (1971a).PubMedCrossRefGoogle Scholar
  12. Lehmann, D.: Topographische Erfassung des EEG. Zschr. EEG EMG 2, 146–147 (1971b).Google Scholar
  13. Lehmann, D. and D. H. Fender: Multichannel analysis of electrical fields of averaged evoked potentials. Electroenceph. clin. Neurophysiol. 27, 671 (1969).CrossRefGoogle Scholar
  14. Lehmann, D., R. N. Kavanagh, and D. H. Fender: Field studies of averaged visually evoked EEG potentials in a patient with split chiasm. Electroenceph. clin. Neurophysiol. 26, 193–199 (1969a).PubMedCrossRefGoogle Scholar
  15. Lehmann, D., J. M. Madey, M. Koukkou, and D. H. Fender: Mapping of visually evoked EEG responses on the human scalp. Invest. Ophthal 8, 651 (1969b).Google Scholar
  16. Petsche, H.: Pathophysiologie und Klinik des Petit Mal. Wien. Z. Nervenheilk. 19, 345–442 (1962).PubMedGoogle Scholar
  17. Petsche, H.: Quantitative analysis of EEG data. In: Schadé, J. P., and J. Smith (eds.), Progress in brain research, Vol. 33, Brain mechanisms, pp. 63–86. 1970.Google Scholar
  18. Etsche, H. und A. Marko: Toposkopische Untersuchungen zur Ausbreitung des Alpharhythmus. Wien. Z. Nervenheilk. 12, 87–100 (1955).Google Scholar
  19. Etsche, H. und A. Marko: Zur dreidimensionalen Darstellung des Spike-Wave-Feldes. Wien. Z. Nervenheilk. 16, 427–435 (1959).Google Scholar
  20. Rémond, A.: Orientations et tendances des méthodes topographiques. Rev. Neurol. 93, 399–432 (1955).PubMedGoogle Scholar
  21. Rémond, A.: The importance of topographic data in EEG phenomena, and an electrical model to reproduce them. Electroenceph. clin. Neurophysiol. Suppl. 27, 29–49 (1968).Google Scholar
  22. Schneider, M., et P. Gerin: Une méthode de localisation des dipôles cérébraux. Electroenceph. clin. Neurophysiol. 28, 69–78 (1970).PubMedCrossRefGoogle Scholar
  23. Shaw, J. C., and M. Roth: Potential distribution analysis. I. A new technique for the analysis of electrophysiological phenomena. Electroenceph. clin. Neurophysiol. 7, 273–284 (1955).PubMedCrossRefGoogle Scholar
  24. Walter, W. G.: Analytical means of studying the nature and origin of epileptic disturbances. Res. Publ. Ass. Nerv. Ment. Dis. (N. Y.) 26, 237–251 (1947).Google Scholar
  25. Weir, B.: The morphology of the spike-wave complex. Electroenceph. clin. Neurophysiol. 19, 284–290 (1965).PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1972

Authors and Affiliations

  • D. Lehmann
    • 1
  1. 1.Labor für NeurophysiologieNeurologische UniversitätsklinikZürichSwitzerland

Personalised recommendations