Skip to main content

The Basic Neuronal Circuit of the Neocortex

  • Conference paper

Abstract

Let it be assumed, for the time being, that something like a basic neuronal circuit of the neocortex does indeed exist and that the well known structural and connectivity differences between various cortical regions do not render such a notion a priori meaningless. Under basic neuronal circuit (or circuits) the fundamental neuronal chain(s) is (are) meant that connect(s) the elements of input (afferents) with the elements of output (efferents) of any grey matter under consideration. Such a chain is rarely if ever a linear succession of neurons: (i) The input channels break up often into several parallel lines that finally converge again upon one or several types of output elements; (ii) interneuronal connexions are often established between the points of synaptic articulations of the parallel lines; (iii) these connexions may be established between articulation points (vertices of the network) of the same order (relative to the input elements), i.e., simply cross connexions or (iv) the connexions may be recurrent from articulation points of higher order to those of lower order (often to secure feedback couplings), else (v) they may feed forward from lower order articulations of the chain to vertices of higher order.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ádám, A.: Simulation of rhythmic nervous activities, II. (Mathematical models for the function of networks with cyclic inhibition.) Kybernetik 5, 103–109 (1968).

    PubMed  Google Scholar 

  • Colonnier, M. L.: The structural design of the neocortex. In: Eccles, J. C. (ed.), Brain and Conscious Experience, pp. 1–18. Berlin-Heidelberg-New York: Springer. 1966.

    Google Scholar 

  • Colonnier, M.: Synaptic pattern of different cell types in the different laminae of the cat visual cortex. An electron microscope study. Brain Research 9, 268–287 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Colonnier, M and S. Rossignol: Heterogenity of the cerebral cortex. In: Jasper, H. H., A. A. Ward, and A. Pope (eds.), Basic mechanisms of the epilepsies, pp. 29–40. Boston: Little, Brown and Co. 1969.

    Google Scholar 

  • Eccles, J. C., M. Ito, and J. Szentágothai: The cerebellum as a neuronal machine. Berlin-Heidelberg-New York: Springer. 1967.

    Google Scholar 

  • Garey, L. J., and T. P. S. Powell: An experimental study of the termination of the lateral geniculo-cortical pathways in the cat and monkey. Proc. R. Soc. (London) B. 179, 41–63 (1971).

    Article  CAS  Google Scholar 

  • Hámori, J., and J. Szentágothai: The “crossing-over” synapse: an electron microscope study of the molecular layer in the cerebellar cortex. Acta biol. Acad. Sci. hung. 15, 95–117 (1964).

    Article  Google Scholar 

  • Harmon, L. D.: Problems in neural modeling. In: REISS, E. R. F. (ed.), Neural theory and modeling, pp. 2–30. Stanford: Stanford University Press. 1964.

    Google Scholar 

  • Hubel, D. H., and T. N. Wiesel: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. (London) 160, 106–154 (1962).

    CAS  Google Scholar 

  • Jones, E. G., and T. P. S. Powell: An electron microscope study of the mode of termination of cortico-thalamic fibers within the sensory relay nuclei of the thalamus. Proc. R. Soc. (London) B 172, 173–185 (1969).

    Article  CAS  Google Scholar 

  • Kling, U., and G. Széxely: Simulations of rhythmic nervous activities, I. (Function of networks with cyclic inhibitions.) Kybernetik 5, 98–103 (1968).

    Google Scholar 

  • Lorente DE Nó: The cerebral cortex: Architecture, intracortical connections and motor projections. In: Fulton, J. F. (ed.), Physiology of the Nervous system, pp. 291–321. London-New York-Toronto: Oxford University Press. 1938 a.

    Google Scholar 

  • Lorente DE Nó Analysis of activity chains of internuncial neurons. J. Neurophysiol. 1,207–244 (1938 b).

    Google Scholar 

  • Marin-Padilla, M.: Prenatal and early postnatal ontogenesis of the human motor cortex: a Golgi study, II. The basket-pyramidal system. Brain Research 23, 185–192 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Molliver, M. E., and H. van der Loos: The synaptic strata of the somesthetic cortex in neonatal dog. Anat. Rec. 163, 317–318 (1969).

    Google Scholar 

  • Mountcastle, V. B.: Modalities and topographic properties of single neurons of cat’s sensory cortex. J. Neurophysiol. 20, 408–434 (1957).

    PubMed  CAS  Google Scholar 

  • Palkovits, M., P. Magyar, and J. Szentagothai: Quantitative histological analysis of the cerebellar cortex in the cat. I. Number and arrangement in space of the Purkinje cells. Brain Research 32, 1–13 (1971 a).

    Article  CAS  Google Scholar 

  • Palkovits, M., P. Magyar, and J. Szentagothai Quantitative histological analysis of the cerebellar cortex in the cat. II. Cell numbers and densities in the granular layer. Brain Research 32, 15–30 (1971 b)

    Article  CAS  Google Scholar 

  • Palkovits, M., P. Magyar, and J. Szentagothai Quantitative histological analysis of the cerebellar cortex in the cat. III. Structural organization of the molecular layer. Brain Research 34,1–18 (1971 c).

    Article  CAS  Google Scholar 

  • Poljakov, G. I.: On structural mechanisms of interneuronal connections in human cerebral cortex. (In Russian.) Arh. Anat. Gistol. Embriol. 32, 15–19 (1955).

    Google Scholar 

  • Ramóny Cajal, S.: Histologie du système nerveux de l’homme et des vertébrés, Vol. 2. Paris: Maloine. 1911.

    Google Scholar 

  • Rutz-Marcos, A., and F. Valverde: Dynamic architecture of the visual cortex. Brain Research 19, 25–39 (1970).

    Article  Google Scholar 

  • Sholl, D. A.: The organization of the cerebral cortex. London: Methuen. 1956.

    Google Scholar 

  • Székely, G.: Development of limb movements: embryological, physiological and model studies. In: Growth of the Nervous System, pp. 77–95. (Ciba Foundation Symposiom on Growth of the Nervous System, 1968, London.) London: Churchill. 1968.

    Google Scholar 

  • Szentágothai, J.: On the synaptology of the cerebral cortex. In: Structure and Function of the Nervous System, pp. 6–14. (Proc. Conf. Structure and Function of the Nervous System 10–14, Dec. 1960.) Moscow: Medgiz. 1962.

    Google Scholar 

  • Szentágothai, J The structure of the synapse in the lateral geniculate body. Acta Anat. (Basel) 55, 166–185 (1963).

    Article  Google Scholar 

  • Szentágothai, J The use of degeneration methods in the investigation of short neuronal connections. In: Singer, M., and J. P. Schadé (eds.), Progress in Brain Research, Vol. 14, pp. 1–32. Amsterdam: Elsevier. 1965.

    Google Scholar 

  • Szentágothai, J The synapses of short local neurons in the cerebral cortex. In: Modern Trends in Neuromorphology, pp. 251–276. (Proc. Internat. Conf. on Neuro-morphology, July 5–6, 1963, Budapest.) Budapest: Akadémiai Kiadó. 1965.

    Google Scholar 

  • Szentágothai, J The anatomy of complex integrative units in the nervous system. In: Lissak, K. (ed.), Recent Development of Neurobiology in Hungary, pp. 9–45. Budapest: Akadémiai Kiadó. 1967.

    Google Scholar 

  • Szentágothai, J.: Architecture of the cerebral cortex. In: Penry, K. (ed.), Basic Mechanisms of the Epilepsies, pp. 13–40. New York: Little, Brown and Co. 1969.

    Google Scholar 

  • Szentágothai, J Les circuits neuronaux de l’écorce cérébrale. Bulletin de l’Académie Royale de Médecine de Belgique. VII. Série 10, 475–492 (1970).

    Google Scholar 

  • Szentágothai, J Some geometrical aspects of the neocortical neuropil. Acta biol. Acad. Sci. hung. 22, 107–124 (1971).

    Article  Google Scholar 

  • Szentágothai, J Neuronal and synaptic architecture of the lateral geniculate body. In: JUNG, R. (ed.), Handbook of Sensory Physiology 7/2. Berlin-Heidelberg-New York: Springer (in press).

    Google Scholar 

  • Uchizono, Koji: Characteristics of excitatory and inhibitory synapses in the central nervous system of the cat. Nature 207, 642–643 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Uchizono, Koji Synaptic organization of the Purkinje cells in the cerebellum of the cat. Exp. Brain Res. 4, 97–113 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Uttley, A. M.: The probability of neural connexions. Proc. R. Soc. B 144, 229–240 (1955).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1972 Springer-Verlag/Wien

About this paper

Cite this paper

Szentágothai, J. (1972). The Basic Neuronal Circuit of the Neocortex. In: Petsche, H., Brazier, M.A.B. (eds) Synchronization of EEG Activity in Epilepsies. Springer, Vienna. https://doi.org/10.1007/978-3-7091-8306-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-8306-9_2

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-8308-3

  • Online ISBN: 978-3-7091-8306-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics