The Basic Neuronal Circuit of the Neocortex

  • J. Szentágothai


Let it be assumed, for the time being, that something like a basic neuronal circuit of the neocortex does indeed exist and that the well known structural and connectivity differences between various cortical regions do not render such a notion a priori meaningless. Under basic neuronal circuit (or circuits) the fundamental neuronal chain(s) is (are) meant that connect(s) the elements of input (afferents) with the elements of output (efferents) of any grey matter under consideration. Such a chain is rarely if ever a linear succession of neurons: (i) The input channels break up often into several parallel lines that finally converge again upon one or several types of output elements; (ii) interneuronal connexions are often established between the points of synaptic articulations of the parallel lines; (iii) these connexions may be established between articulation points (vertices of the network) of the same order (relative to the input elements), i.e., simply cross connexions or (iv) the connexions may be recurrent from articulation points of higher order to those of lower order (often to secure feedback couplings), else (v) they may feed forward from lower order articulations of the chain to vertices of higher order.


Purkinje Cell Pyramidal Cell Cerebellar Cortex Terminal Branch Neuronal Circuit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ádám, A.: Simulation of rhythmic nervous activities, II. (Mathematical models for the function of networks with cyclic inhibition.) Kybernetik 5, 103–109 (1968).PubMedGoogle Scholar
  2. Colonnier, M. L.: The structural design of the neocortex. In: Eccles, J. C. (ed.), Brain and Conscious Experience, pp. 1–18. Berlin-Heidelberg-New York: Springer. 1966.Google Scholar
  3. Colonnier, M.: Synaptic pattern of different cell types in the different laminae of the cat visual cortex. An electron microscope study. Brain Research 9, 268–287 (1968).PubMedCrossRefGoogle Scholar
  4. Colonnier, M and S. Rossignol: Heterogenity of the cerebral cortex. In: Jasper, H. H., A. A. Ward, and A. Pope (eds.), Basic mechanisms of the epilepsies, pp. 29–40. Boston: Little, Brown and Co. 1969.Google Scholar
  5. Eccles, J. C., M. Ito, and J. Szentágothai: The cerebellum as a neuronal machine. Berlin-Heidelberg-New York: Springer. 1967.Google Scholar
  6. Garey, L. J., and T. P. S. Powell: An experimental study of the termination of the lateral geniculo-cortical pathways in the cat and monkey. Proc. R. Soc. (London) B. 179, 41–63 (1971).CrossRefGoogle Scholar
  7. Hámori, J., and J. Szentágothai: The “crossing-over” synapse: an electron microscope study of the molecular layer in the cerebellar cortex. Acta biol. Acad. Sci. hung. 15, 95–117 (1964).CrossRefGoogle Scholar
  8. Harmon, L. D.: Problems in neural modeling. In: REISS, E. R. F. (ed.), Neural theory and modeling, pp. 2–30. Stanford: Stanford University Press. 1964.Google Scholar
  9. Hubel, D. H., and T. N. Wiesel: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. (London) 160, 106–154 (1962).Google Scholar
  10. Jones, E. G., and T. P. S. Powell: An electron microscope study of the mode of termination of cortico-thalamic fibers within the sensory relay nuclei of the thalamus. Proc. R. Soc. (London) B 172, 173–185 (1969).CrossRefGoogle Scholar
  11. Kling, U., and G. Széxely: Simulations of rhythmic nervous activities, I. (Function of networks with cyclic inhibitions.) Kybernetik 5, 98–103 (1968).Google Scholar
  12. Lorente DE Nó: The cerebral cortex: Architecture, intracortical connections and motor projections. In: Fulton, J. F. (ed.), Physiology of the Nervous system, pp. 291–321. London-New York-Toronto: Oxford University Press. 1938 a.Google Scholar
  13. Lorente DE Nó Analysis of activity chains of internuncial neurons. J. Neurophysiol. 1,207–244 (1938 b).Google Scholar
  14. Marin-Padilla, M.: Prenatal and early postnatal ontogenesis of the human motor cortex: a Golgi study, II. The basket-pyramidal system. Brain Research 23, 185–192 (1970).PubMedCrossRefGoogle Scholar
  15. Molliver, M. E., and H. van der Loos: The synaptic strata of the somesthetic cortex in neonatal dog. Anat. Rec. 163, 317–318 (1969).Google Scholar
  16. Mountcastle, V. B.: Modalities and topographic properties of single neurons of cat’s sensory cortex. J. Neurophysiol. 20, 408–434 (1957).PubMedGoogle Scholar
  17. Palkovits, M., P. Magyar, and J. Szentagothai: Quantitative histological analysis of the cerebellar cortex in the cat. I. Number and arrangement in space of the Purkinje cells. Brain Research 32, 1–13 (1971 a).CrossRefGoogle Scholar
  18. Palkovits, M., P. Magyar, and J. Szentagothai Quantitative histological analysis of the cerebellar cortex in the cat. II. Cell numbers and densities in the granular layer. Brain Research 32, 15–30 (1971 b)CrossRefGoogle Scholar
  19. Palkovits, M., P. Magyar, and J. Szentagothai Quantitative histological analysis of the cerebellar cortex in the cat. III. Structural organization of the molecular layer. Brain Research 34,1–18 (1971 c).CrossRefGoogle Scholar
  20. Poljakov, G. I.: On structural mechanisms of interneuronal connections in human cerebral cortex. (In Russian.) Arh. Anat. Gistol. Embriol. 32, 15–19 (1955).Google Scholar
  21. Ramóny Cajal, S.: Histologie du système nerveux de l’homme et des vertébrés, Vol. 2. Paris: Maloine. 1911.Google Scholar
  22. Rutz-Marcos, A., and F. Valverde: Dynamic architecture of the visual cortex. Brain Research 19, 25–39 (1970).CrossRefGoogle Scholar
  23. Sholl, D. A.: The organization of the cerebral cortex. London: Methuen. 1956.Google Scholar
  24. Székely, G.: Development of limb movements: embryological, physiological and model studies. In: Growth of the Nervous System, pp. 77–95. (Ciba Foundation Symposiom on Growth of the Nervous System, 1968, London.) London: Churchill. 1968.Google Scholar
  25. Szentágothai, J.: On the synaptology of the cerebral cortex. In: Structure and Function of the Nervous System, pp. 6–14. (Proc. Conf. Structure and Function of the Nervous System 10–14, Dec. 1960.) Moscow: Medgiz. 1962.Google Scholar
  26. Szentágothai, J The structure of the synapse in the lateral geniculate body. Acta Anat. (Basel) 55, 166–185 (1963).CrossRefGoogle Scholar
  27. Szentágothai, J The use of degeneration methods in the investigation of short neuronal connections. In: Singer, M., and J. P. Schadé (eds.), Progress in Brain Research, Vol. 14, pp. 1–32. Amsterdam: Elsevier. 1965.Google Scholar
  28. Szentágothai, J The synapses of short local neurons in the cerebral cortex. In: Modern Trends in Neuromorphology, pp. 251–276. (Proc. Internat. Conf. on Neuro-morphology, July 5–6, 1963, Budapest.) Budapest: Akadémiai Kiadó. 1965.Google Scholar
  29. Szentágothai, J The anatomy of complex integrative units in the nervous system. In: Lissak, K. (ed.), Recent Development of Neurobiology in Hungary, pp. 9–45. Budapest: Akadémiai Kiadó. 1967.Google Scholar
  30. Szentágothai, J.: Architecture of the cerebral cortex. In: Penry, K. (ed.), Basic Mechanisms of the Epilepsies, pp. 13–40. New York: Little, Brown and Co. 1969.Google Scholar
  31. Szentágothai, J Les circuits neuronaux de l’écorce cérébrale. Bulletin de l’Académie Royale de Médecine de Belgique. VII. Série 10, 475–492 (1970).Google Scholar
  32. Szentágothai, J Some geometrical aspects of the neocortical neuropil. Acta biol. Acad. Sci. hung. 22, 107–124 (1971).CrossRefGoogle Scholar
  33. Szentágothai, J Neuronal and synaptic architecture of the lateral geniculate body. In: JUNG, R. (ed.), Handbook of Sensory Physiology 7/2. Berlin-Heidelberg-New York: Springer (in press).Google Scholar
  34. Uchizono, Koji: Characteristics of excitatory and inhibitory synapses in the central nervous system of the cat. Nature 207, 642–643 (1965).PubMedCrossRefGoogle Scholar
  35. Uchizono, Koji Synaptic organization of the Purkinje cells in the cerebellum of the cat. Exp. Brain Res. 4, 97–113 (1967).PubMedCrossRefGoogle Scholar
  36. Uttley, A. M.: The probability of neural connexions. Proc. R. Soc. B 144, 229–240 (1955).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1972

Authors and Affiliations

  • J. Szentágothai
    • 1
  1. 1.First Department of AnatomySemmelweis University Medical SchoolBudapestHungary

Personalised recommendations