Advertisement

Phylogenetic Aspects of Synchronization in the Electrogenesis of Epileptic Phenomena. Thalamo-Cortical Mechanisms in Lower Vertebrates

  • Z. Servít
Conference paper

Abstract

It is generally accepted that excessive synchronization (hypersynchrony) should be one of the essential features of epileptic activity in the nervous tissue (see e.g., Jasper 1969, Creutzfeldt 1969, and Ajmone Marsan 1969).

Keywords

Epileptic Activity Lower Vertebrate Epileptic Focus Electrographic Seizure Epileptogenic Focus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adrian, E. D.: The activity of the nervous system in the caterpillar. J. Physiol. 70, 34–47 (1930).Google Scholar
  2. Adrian, E. D.: Polential changes in the isolated nervous system of the Dytiscus marginalia. J. Physiol. 72, 132–148 (1931).PubMedGoogle Scholar
  3. Ajmone Marsan, C.: Electrographic aspects of “epileptic” neuronal aggregates. Epilepsia 2, 22–38 (1961).PubMedCrossRefGoogle Scholar
  4. Ajmone Marsan, C.: Acute effects of topical epileptogenic agents. In: Jasper et al. (eds.), Basic mechanisms of epilepsy, pp. 299–319. Boston: Little, Brown & Co. 1969.Google Scholar
  5. Belerhova, M. G.: Electrical activity of cerebral hemispheres evoked by stimulation of diencephalic structures in Varanus. Fiz. Zh. SSSR im. I. Sechenova 49, 1318–1329 (1963). [In Russian.] Fed. Proc. Suppl. 24,T 159 (1965). [English translation.]Google Scholar
  6. Bisisor, G. H.: The organization of cortex with respect to its afferent supply. Ann. N. Y. Acad. Sci. 94, 559 (1961).Google Scholar
  7. Gaspers, H.: Die Aktivierung kortikaler Krampfstromherde im natürlichen und elektrisch induzierten Schlaf beim Tier. Z. Ges. exp. Med. 124, 176 (1954).Google Scholar
  8. Gaspers, H. and K. Winkel: Untersuchungen über die Bedeutung des Thalamus und Lobus opticus für die Großhirnrhythmik beim Frosch. Pflügers Arch. 255, 391–416 (1952).CrossRefGoogle Scholar
  9. Creutzfeldt, O. D.: Neuronal mechanisms underlying the EEG. In: Jasper et al. (eds.), Basic mechanisms of epilepsy, pp. 397–410. Boston: Little, Brown & Co. 1969.Google Scholar
  10. Crosby, E. C.: The forebrain of Alligator Mississipiensis. J. comp. Neurol. 27, 325–402 (1917).CrossRefGoogle Scholar
  11. Guselnikov, V. I.: Elektrofiziologicheskoe issledovanie analizatornykh sistem v filogeneze pozvonochnykh, p. 266. Moskva: Izdatelstvo Mosk. Univ. 1965.Google Scholar
  12. Hall, W. C., and F. F. Ebner: Thalamoencephalic projections in the turtle (Pseudemys scripta). J. comp. Neurol. 140, 101–122 (1970).PubMedCrossRefGoogle Scholar
  13. Jasper, H. H.: Mechanisms of propagation: extracellular studies. In: Jasper et al. (eds.), Basic mechanisms of epilepsy, pp. 421–440. Boston: Little, Brown & Co. 1969.Google Scholar
  14. Karamyan, A. I.: Funktsionalnaya evolutsia mozga pozvonochnych (Functional evolution of the vertebrate brain), p. 301. Leningrad: Izd. Nauka. 1970.Google Scholar
  15. Karamyan, A. I., N. P. Vesselkin, M. G. Belekhova, and T. M. Zagorulko: Electrophysiological characteristics of tectal and thalamo-cortical divisions of the visual system in lower vertebrates. J. comp. Neurol. 127, 559–576 (1966).CrossRefGoogle Scholar
  16. Killam, K. F.: Genetic models of epilepsy with special reference to the syndrome of the Papio papio. Epilepsia 10, 229–238 (1969).PubMedCrossRefGoogle Scholar
  17. Krekule, I., T. Weiss, and Z. Servit: Comparison by means of probalistic methods of ten per second quasiperiodic activities recorded in man and frog. In: Servit, Z. (ed.), Comparative and Cellular Pathophysiology of Epilepsy, Proc. Internat. Cong. Ser. No. 124, Liblice 1965, pp. 129–138. Amsterdam: Excerpta Medica. 1966.Google Scholar
  18. Kruger, L.: Experimental analysis of the nervous system. Ann. N. Y. Acad. Sci. 167, 102–117 (1969).CrossRefGoogle Scholar
  19. Kruger, L. and Ellis C. Berkowitz: The main afferent connections of the reptilian telencephalon as determined by degeneration and electrophysiological methods. J. comp. Neurol. 115, 125–141 (1960).PubMedCrossRefGoogle Scholar
  20. Marcus, M., and C. W. Watson: Bilateral synchronous spike wave electrographic patterns in the cat. Arch. Neurol. 14, 601–610 (1966).PubMedCrossRefGoogle Scholar
  21. Marcus, M., and C. W. Watson: Symmetrical epileptogenic foci in monkey cerebral cortex. Arch. Neurol. 19, 99–116 (1968).PubMedCrossRefGoogle Scholar
  22. Marcus, M., and S. A. Simon: An experimental model of some varieties of petit mal epilepsy. Electrical-behavioral correlations of acute bilateral epileptogenic foci in cerebral cortex. Epilepsia 9, 233–248 (1968).PubMedCrossRefGoogle Scholar
  23. Morocutti, C., and R. Vizioli: Osservazioni sull’attivita elettrica del cervello e sulle crisi convulsive di „Bufo Vulgaris“. Riv. neurol. 27, 669–676 (1957).PubMedGoogle Scholar
  24. Orrego, F.: The reptilian forebrain. I. The olfactory pathways and cortical areas in the turtle. Arch. ital. Biol. 99, 425–445 (1961).Google Scholar
  25. Petsche, H., and P. Rappelsberger: Die Beeinflussung der Potentialfelder epileptischer Anfälle durch Rindeninzision. Különlenyomat az Ideggydgyâszati 2, 1–12 (1970).Google Scholar
  26. Petsche, H., and P. Rappelsberger: Influence of cortical incisions on synchronization pattern and travelling waves. Electroenceph. clin. Neurophysiol. 28, 592–600 (1970).Google Scholar
  27. Petsche, H., and J. Sterc: The significance of the cortex for the travelling phenomenon of brain waves. Electroenceph. clin. Neurophysiol. 25, 11–22 (1968).Google Scholar
  28. Peyrethon, J.: Sommeils et évolution. Etude polygraphique des états de sommeil chez les poissons et les reptiles. Thèse de Médecine No. 201, 104, Lyon (1968).Google Scholar
  29. Servit, Z.: Physiopathologie comparée des manifestations électroencéphalographi-ques de la crise épileptique. J. Physiol. 57, 731–741 (1965).Google Scholar
  30. Servit, Z.: Comparative physiology of the paroxysmal EEG. Pattern and frequency of paroxysmal activity on different levels of brain phylogeny. In: Servit, Z. (ed.), Comparative and Cellular Pathophysiology of Epilepsy, Proc. Internat. Congr. Ser. No. 124, Liblice 1965, pp. 103–111. Amsterdam: Excerpta Medica. 1966.Google Scholar
  31. Servit, Z.: Focal epileptic activity and its spread in the brain of lower vertebrates. A comparative electrophysiological study. Epilepsia 11, 224–240 (1970).CrossRefGoogle Scholar
  32. Servit, Z., J. Machek, and J. Fischer: Electrical activity of the frog brain during electrically induced seizures. A comparative study of the spike and wave complex. Electroenceph. clin. Neurophysiol. 19, 162–171 (1965).Google Scholar
  33. Servit, Z., and A. Strejcxova: Comparative pathophysiology of the paroxysmal electroencephalogram. Paroxysmal electroencephalogram (spike and wave activity) in the lizard (Lacerta agilis). Physiol. bohemoslov. 15, 117–121 (1966).PubMedGoogle Scholar
  34. Servit, Z., and A. Strejcxova: Epileptogenic focus in the frog telencephalon. Seizure irradiation from the focus. Physiol. bohemoslov. 16, 522–530 (1967).Google Scholar
  35. Servit, Z., and A. Strejcxova: An electrographic focus in the fish forebrain. Conditions and pathways of propagation of focal and paroxysmal activity. Brain Research 17, 103–113 (1970).PubMedCrossRefGoogle Scholar
  36. Servit, Z., and J. Fischer: Comparative physiology of the thalamic pacemaker of paroxysmal activity. Extirpation of thalamus in the frog. In: Servit, Z. (ed.), Comparative and Cellular Pathophysiology of Epilepsy, Proc. Internat. Congr. Ser. No. 124, Liblice 1965, pp. 270–276. Amsterdam: Excerpta Medica. 1966.Google Scholar
  37. Servit, Z., and D. Volanschi: An epileptogenic focus in the frog telencephalon. Pathways of propagation of focal activity. Exp. Neurol. 21, 383–396 (1968).PubMedCrossRefGoogle Scholar
  38. Servit, Z., and D. Volanschi: Epileptic focus in the forebrain of the turtle (Testudo Graeca). Triggering of focal discharges with different sensory stimuli. Physiol. bohemoslov. 20, 221–228 (1971).PubMedGoogle Scholar
  39. Smirnov, G. D., and J. B. Manteifel: Sravnitelnoe elektrofiziologicheskoe izuchenie mozga v ryadu pozvonochnykh zhivotnykh. Uspechi sovr. biol. 54, 309–332 (1962).Google Scholar
  40. Smith, Elliot: Some problems relating to the evolution of the brain. Lancet 1, 147 (1910).CrossRefGoogle Scholar
  41. Strejbkova, A.: Epileptogenic focus in the forebrain of the fish. Physiol. bohemoslov. 18, 209–216 (1969).Google Scholar
  42. Tauber, E. S., J. Rojas-Ramírez, and R. Hernandez-Peon: Electrophysiologi-cal and behavioral correlates of wakefulness and sleep in the lizard Ctenosaura Pectinata. Electroenceph. clin. Neurophysiol. 24, 424–433 (1968).Google Scholar
  43. Verzeano, M., D. B. Lindsley, and H. W. Magoun: Nature of recruiting response. J. Neurophysiol. 16, 183–195 (1953).PubMedGoogle Scholar
  44. Volanschi, D., and Z. Servit: Epileptic focus in the forebrain of the turtle. Exp. Neurol. 24, 137–146 (1969 a).CrossRefGoogle Scholar
  45. Volanschi, D., and Z. Servit: Epileptic focus in the forebrain of the turtle. Pathways of propagation of epileptic activity. Physiol. bohemoslov. 18, 381–386 (1969 b).Google Scholar
  46. Voronin, L. G., and V. I. Guselnikov: K filogenezu vnutrennykh mekhanizmov analitikosinteticheskoi deyatelnosti golovnogo mozga. Zh. vyssh. nervn. deyat. 13, 193–206 (1963).Google Scholar
  47. Wilder, B. J., and F. Morrell: Secondary epileptogenesis in the frog forebrain. Neurology 17, 1041–1051 (1967).PubMedGoogle Scholar
  48. Wilder, B. J., R. L. King, and R. P. Schmidt: A comparative study of secondary epileptogenesis. Epilepsia 9, 275–289 (1968).PubMedCrossRefGoogle Scholar
  49. Winkel, K., und H. Casters: Untersuchungen an Reptilien über die Beeinflussung der Großhirnrindenrhythmik durch Zwischenhirnreizungen mit besonderer Berücksichtigung des Thalamus. Pflügers Arch. 258, 22–37 (1953).PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1972

Authors and Affiliations

  • Z. Servít
    • 1
  1. 1.Institute of PhysiologyCzechoslovak Academy of SciencesCzech Republic

Personalised recommendations