Advertisement

Intracortical Aspects of the Synchronization of Self-Sustained Bioelectrical Activities

  • H. Petsche
  • P. Rappelsberger
  • Zs. Frey

Abstract

For studying cortical electrogenesis and its synchronization to what is commonly called “EEG”, the rabbit has turned out to be the most suitable animal. Owing to his unfolded, evenly stretched-out cortex this animal offers optimum conditions for studying the geometry of potential distribution in an electrically active, structurally fairly homogeneous, multi-layered accumulation of generators. In all but lissencephalic animals, the laws described by Woodbury’s angle theorem (1960) make the phenomena still more complex.

Keywords

Deep Layer Seizure Activity Volume Conduction Seizure Pattern Hippocampal Theta Rhythm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adrian, E. D.: The spread of activity in the cerebral cortex. J. Physiol. 88,127–161 (1936).Google Scholar
  2. Burns, B. D.: The mammalian cerebral cortex, p. 119. London: Edward Arnold Ltd. 1958.Google Scholar
  3. Elul, R.: Statistical mechanisms in generation of the EEG. In: Progress in Biomedical Engineering, Vol. I, pp. 131–150. Washington, D.C.: Spartan Books. 1967.Google Scholar
  4. Green, J. D., and H. Petsche: Hippocampal electrical activity. IV: Unitary events and genesis of hippocampal seizures. Electroenceph. clin. Neurophysiol. 13, 868–879 (1961).Google Scholar
  5. Li, C. L., C. Cullen, and H. H. Jasper: Laminar microelectrode analysis of cortical unspecific responses and spontaneous rhythms. J. Neurophysiol. 19, 131–134 (1956).PubMedGoogle Scholar
  6. Peronnet, F., M. Sindou, A. Laviron, F. Quoex, and P. Gerin: Human cortical electrogenesis through stratigraphy and spectral analysis. See this book, pp. 235–262.Google Scholar
  7. Petsche, H., und P. Rappelsberger: Der Strophanthinstatus als Modell für die Auswertung antikonvulsiver Medikamente. Pharmakopsychiatrie 3, 151–161 (1970 b).CrossRefGoogle Scholar
  8. Petsche, H., und P. Rappelsberger:Influence of cortical incisions on synchronization patterns and travelling waves. Electroenceph. clin. Neurophysiol. 28,592–600 (1970 a).CrossRefGoogle Scholar
  9. Petsche, H., und P. Rappelsberger:Spatio-temporal and laminar analysis of self-sustained cortical activity. (In press.)Google Scholar
  10. Petsche, H., P. Rappelsberger: und Zs. Frey: Intrakortikale Mechanismen bei der Entstehung der Penicillin-Spitzen. EEG — EMG. 2, 176–180 (1971).Google Scholar
  11. Petsche, H., und P. Rappelsberger:and R. Trappl: Properties of cortical seizure potential fields. Electroenceph. clin. Neurophysiol. 29, 567–578 (1970).Google Scholar
  12. Petsche, H.and J. Sterc: The significance of the cortex for the travelling phenomenon of brain waves. Electroenceph. clin. Neurophysiol. 25, 11–22 (1968).Google Scholar
  13. Pollen, D. A.: Intracortical studies of cortical neurons during thalamic induced wave and spike. Electroenceph. clin. Neurophysiol. 17, 398–404 (1964).Google Scholar
  14. Pollen, D. A.,K. H. Recd, and P. Perot: Microelectrode studies of experimental 3/sec wave and spike in the cat. Electroenceph. clin. Neurophysiol. 17, 57–67 (1964).Google Scholar
  15. Saunders, M. G.: Amplitude probability density studies on alpha and alphalike patterns. Electroenceph. clin. Neurophysiol. 15, 761–767 (1963).Google Scholar
  16. Scherrer, J., and J. Calvet: Normal and epileptic synchronization at cortical level in animal. See this book, pp. 112–132.Google Scholar
  17. Speckmann, E. J., H. Gaspers, and R. W. Janzen: Relations between cortical DC shifts and membrane potential changes of cortical neurons associated with seizure activity. See this book, pp. 93–111.Google Scholar
  18. Walter, D. O., J. M. Rhodes, D. Brown, and W. R. Adey: Comprehensive spectral analysis of human EEG generators in posterior cerebral regions. Electroenceph. clin. Neurophysiol. 20, 224–237 (1966).Google Scholar
  19. Woodbury, J. W.: Potentials in a volume conductor. In: Ruch, I. C., and J. F. Fulton (eds.), Medical physiology and biophysics, pp. 83–91. Philadelphia: Saunders. 1960.Google Scholar

Copyright information

© Springer-Verlag/Wien 1972

Authors and Affiliations

  • H. Petsche
    • 1
  • P. Rappelsberger
    • 1
  • Zs. Frey
    • 1
  1. 1.Brain Research Institute, Austrian Academy of SciencesNeurological Institute of the University of ViennaAustria

Personalised recommendations