Human Cortical Electrogenesis: Stratigraphy and Spectral Analysis

  • F. Peronnet
  • M. Sindou
  • A. Laviron
  • F. Quoex
  • P. Gerin


The most important results concerning the mechanisms of cortical electrogenesis have been achieved with animals thanks to transcortical bipolar investigations (Bishop and Clare 1952, Calvet and Scherrer 1961 a, b, Calvet et al. 1964, Jami et al. 1965, Fourment et al. 1965). These researches revealed that only the technique of transcortical derivation could give an accurate account of cortical activity. This is in accordance with the histological radiate structure of the cortex. The best proof of this is the parallelism between the phenomena of EEG type that this technique records and the unitary activity of neuronal volume explored. Moreover stratigraphic explorations enable these phenomena to be linked with the existence of generators. Experiments on human beings have been made with simple transcortical derivation by Hirsch et al. (1961, 1965, 1966) in particular. To our knowledge there have not been stratigraphic experiments with humans.


White Matter Grey Matter Phase Relation Pyramidal Cell Deep Grey Matter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersen, P.: Interhippocampal impulses. Acta Physiol. Scand. 48, 178–208 (1960).CrossRefGoogle Scholar
  2. Bishop, G. H., and M. H. Clare: Sites of origin of electric potentials in striate cortex. J. Neurophysiol. 15, 201–220 (1952).PubMedGoogle Scholar
  3. Brechner, V. L., Walter, and Dillon: Practical electroencephalography for the anesthesiologist, American lecture series. Springfield, III.: Charles C. Thomas. 1962.Google Scholar
  4. Bremer, F.: L’interprétation des potentiels électriques de l’écorce cérébrale. Structure and function of the cerebral cortex. Elsevier Publishing Company. 1960.Google Scholar
  5. Buser, P., and D. Albe Fessard: Explorations intracellulaires au niveau du cortex sensorimoteur du chat. In: Microphysiologie Comparée des Éléments Excitables. Paris: C.N.R.S. 1955.Google Scholar
  6. Calvet, J.: Comparaison de Lactivité électroencéphalographique dérivée par électrodes de surface et par électrodes transcorticales. J. Physiol. 54, 308–309 (1962).Google Scholar
  7. Calvet, J. M. C. Calvet, and J. M. Langlois: Diffuse cortical activation waves during so called desynchronized EEG patterns. J. Neurophysiol. 28, 893–907 (1965).PubMedGoogle Scholar
  8. Calvet, J.,J. Scherrer: Etude stratigraphique corticale de l’activité EEG spontanée. Electroenceph. clin. Neurophysiol 17, 109–125 (1964).Google Scholar
  9. Calvet, J. M. C. Holingue, A. Guillard et J. Scherrer: Etude par électrodes transcorticales de certaines réactions d’arrêt du lapin. Revue Neurol. 102, 316–318 (1960).Google Scholar
  10. Calvet, J. J. Scherrer: Activité bio-électrique de l’écorce cérébrale â ses différents niveaux. C. R. Soc. Biol. 155, 275–278 (1961).Google Scholar
  11. Calvet, J.:Relation des décharges unitaires avec les ondes cérébrales spontanées et la polarisation corticale. C. R. Acad. Sci. 252, 2297–2299 (1961).Google Scholar
  12. Creutzfeldt, O. D., and S. Watanabe: Relations between EEG phenomena and potentials of single cortical cells. Electroenceph. clin. Neurophysiol. 20, 1–8, (1960).Google Scholar
  13. Eccles, J. C., K. Sasaki, and P. Strata: Interpretation of the potentials fields generated in the cerebellar cortex by mossy fibre volley. Exp. Brain Res. 3, 58–80, (1967).Google Scholar
  14. Elul, R.: Randomness and synchrony in the generation of the electroencephalogram. See this book, pp. 59–77.Google Scholar
  15. Fourment, A., L. Jami, J. Calvet et J. Scherrer: COmparalSOn de l’EEG recueilli sur le scalp avec l’activité élementaire des dipoles corticaux. Electroenceph. clin. Neurophysiol. 19, 217–229 (1965).Google Scholar
  16. Garma, L. et R. Verley: Générateurs corticaux étudiés par électrodes implantées chez le lapin nouveau-né. J. Physiol. 57, 811–818 (1965).Google Scholar
  17. Gloor, P., C. L. Vera, and L. Sperti: Electrophysiological studies of hippo- campal neurons. Electroenceph. clin. Neurophysiol. 15, 353–378 (1963).Google Scholar
  18. Hirsch, J. F., J. Buisson Ferey, M. Sachs, J. C. Hirsch et J. Scherrer: Electrocorticogramme et activités unitaires lors de processus expansifs chez l’homme. Electroenceph. clin. Neurophysiol. 21, 417–428 (1966).Google Scholar
  19. Hirsch, J. F., M. Sachs et G. Arfel: Enregistrements transcorticographiques chez l’homme. Revue Neurol. (Paris) 105, 230–235 (1961).Google Scholar
  20. Hirsch, J. F., M. Sachs et G. Arfel J. Buisson Ferey, J. C. Hirsch J. Scherrer: Etude par microélectrodes du rapport des ondes électrocorticales et des décharges unitaires chez l’homme dans cetains processus pathologiques. Revue Neurol. (Paris) 113, 229–235 (1965).Google Scholar
  21. Holubar, J.: Mechanisms of the primary cortical responses (PCR) of the somatosensory area in rats. Physiol. Bohemoslov. 13, 385–396 (1964).PubMedGoogle Scholar
  22. Holubar, J. and J. Fischer: Histological localisation of the components of primary cortical responses (PCR). In the somatosensory area in rats. Physiol. Bohemoslov. 13, 484–494 (1964).Google Scholar
  23. Jami, L., A. Fourment, J. Clavet et J. Scherrer: Activité EEG étudiée en transcorticographie et en dérivation monopolaire classique. Revue. Neurol. (Paris) 113, 251–252 (1965).Google Scholar
  24. Kuhnt, U.: Neuronal correlates of the visual evoked response and disinhibition in the visual cortex during flicker response. See this book, pp. 78–92.Google Scholar
  25. Laviron, A.: Filtrage numérique des rythmes d’origine biologique. Med. and Biol. Engng. 9, 97–120 (1971a).Google Scholar
  26. Laviron, A.: Interprétation automatique, en ligne, de l’électroencephalogramme. Critique méthodologique. Réalisation pratique sur petit ordinateur. Thèse de sciences N° 48. Université de Lyon (1971b).Google Scholar
  27. Li, C. L., C. Cullen, and H. H. Jasper: Laminar microelectrodes studies of specific somatosensory cortical potentials. J. Neurophysiol. 19, 111–130 (1956a).PubMedGoogle Scholar
  28. Li, C. L., C. Cullen, and H. H. Jasper: Laminar microelectrodes analysis of cortical unspecific recruiting responses and spontaneous rhythms. J. Neurophysiol. 19, 131–143 (1956b).PubMedGoogle Scholar
  29. Nicholson, C., and R. Lianas: Field potentials in the alligator cerebellum and theory of their relationship to Purkinje cell dendritic spikes. J. Neurophysiol. 34, 509–531 (1971).PubMedGoogle Scholar
  30. Ochs, S.: Cortical potentials and pyramidal cells. A theoretical discussion. Perspect. Biol. Med. 9, 126–136 (1965).PubMedGoogle Scholar
  31. Petsche, H., P. Rappelsberger, and Zs. Frey: Intracortical aspects of the synchronization of self-sustained bioelectrical activities. See this book, pp. 263–284.Google Scholar
  32. Purpura, D. P., M. N. Carmichael, and E. M. Housepian: Physiological and anatomical studies of development of superficial axodendritic synaptic pathways in neocortex. Exp. Neurol. 2, 324–347 (1960).PubMedCrossRefGoogle Scholar
  33. Raabe, W., and H. D. Lux: Studies on extracellular potentials generated by synaptic activity on single cat motor cortex neurons. See this book, pp. 46–58.Google Scholar
  34. Ball, W.: Electrophysiology of a dendritic neuron model. Biophysics 2, 145–167 (1962).CrossRefGoogle Scholar
  35. Ball, W. and G. M. Shepherd: Theoretical reconstruction of field potentials and dendrodendritic synaptic interactions in olfactory bulb. J. Neurophysiol. 31, 884–915 (1968).Google Scholar
  36. Sadove, M. S., A. D. Beck, and F. A. Goss: Electroencephalographic for anesthesiologists and surgeons. London: Pitman Med. Publ. and Philadelphia: J. B. Lippincott, Cie. 1967.Google Scholar
  37. Scherrer, J.: Analyse de l’activité électrocorticale spontanée. Actualités Neurophysiologiques, série, pp. 201–221. Paris: Masson. 1965.Google Scholar
  38. Speckmann, E. J., H. Gaspers, and R. W. Janzen: Relations between cortical DC shifts and membrane potential changes of cortical neurons associated with seizure activity. See this book, pp. 93–111.Google Scholar
  39. Verley, R.: Recherches sur le developpement des activités électrocorticales avec des électrodes corticales radiaires. J. Physiologie 57, 407–436 (1965).Google Scholar
  40. Van Economo, C.: L’architecture cellulaire normale de l’écorce cérébrale. Paris: Manson. 1927.Google Scholar
  41. Van Der Loos, H.: The “improperly” oriented pyramidal cell in the cerebral cortex and its possible bearing on problems of neuronal growth and cell orientation. Bull. J. Hopkins Hosp. 117, 228–250 (1965).Google Scholar

Copyright information

© Springer-Verlag/Wien 1972

Authors and Affiliations

  • F. Peronnet
    • 1
    • 2
  • M. Sindou
    • 1
    • 2
  • A. Laviron
    • 1
    • 2
  • F. Quoex
    • 1
    • 2
  • P. Gerin
    • 1
    • 2
  1. 1.Unité de Recherches de l’INSERM sur la physiopathologie du système nerveuxBronFrance
  2. 2.Service de NeurochirurgieHôpital NeurologiqueLyonFrance

Personalised recommendations