Advertisement

Invited Discussion

The Fast Walsh Transform: A New Method for Analyzing EEG Data
  • R. Trappl
Conference paper

Abstract

I want to draw your attention to a new method for analyzing continous recordings which has not—as far as I know—been applied to EEG-data. The only medical application published up to now which came to my knowledge is the recognition of types of waveforms in the electrocardiogram by Morgan (1971).

Keywords

Fast Fourier Transform Trigonometric Function Reduce Computation Time Walsh Function Voice Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bösswetter, C.: Analog sequency analysis and synthesis of voice signals. In: Walsh Symp. 1, 220–229 (1970).Google Scholar
  2. Cooley, J. W., and J. W. Tukey: An algorithm for the machine calculation of complex Fourier series. Math. of Comp. 19, 297–301 (1965).CrossRefGoogle Scholar
  3. Harmuth, H. F.: A generalized concept of frequency and some applications. IEEE Trans. Inf. Theory IT-14, 375–382 (1968).Google Scholar
  4. Harmuth, H. F.: Transmission of Information by Orthogonal Functions, 2nd printing. BerlinHeidelberg-New York: Springer. 1970.Google Scholar
  5. Kremer, H.: Algorithmen für schnelle Walsh-Transformationen. Forsch. Ber. Nr. 12 d. Inst. f. allg. Nachrichtentechnik d. Techn. Hochschule Darmstadt; Dez. 1970.Google Scholar
  6. Morgan, D. G.: The use of Walsh-functions in the analysis of physiological signals. In: Walsh Symp 3 (1971).Google Scholar
  7. Pichler, F.: Das System der sal- und cal-Funktionen als Erweiterung des Systems der Walsh-Funktionen und die Theorie der sal- und cal-Fouriertransformation. Phil. Diss. Univ. Innsbruck, 1967.Google Scholar
  8. Pichler, F.: Walsh-functions and linear system theory. Dept. of Electr. Eng., Univ. of Maryland, Rep. T-70–05 (1970).Google Scholar
  9. Pratt, W. K., J. Kane, and H. C. Andrews: Hadamard transform image coding. Proc. IEEE 57, 58–68 (1969).CrossRefGoogle Scholar
  10. Shanks, J. L.: Computation of the Fast Walsh-Fourier Transform. IEEE Trans. Computers IC-18, 457–459 (1969).Google Scholar
  11. Walsh, J. L.: A closed set of normal orthogonal functions. Amer. J. Math. 45, 5–24 (1923).CrossRefGoogle Scholar

Walsh Symposia

  1. 1.
    Applications of Walsh Functions. Symposium and Workshop. Held at Naval Res. Laboratory, Washington, D. C. March, 31—April 3, 1970.Google Scholar
  2. 2.
    Applications of Walsh Functions. Symposium. Held at Departmental Auditorium, Constitution Ave, Washington, D. C. April 13–14, 1971.Google Scholar
  3. 3.
    Theory and Applications of Walsh Functions. Symposium. Held at The Hatfield Polytechnic. June 29–30, 1971.Google Scholar

Copyright information

© Springer-Verlag/Wien 1972

Authors and Affiliations

  • R. Trappl
    • 1
  1. 1.Institute of General and Comparative Physiology of the University ViennaAustria

Personalised recommendations