Advertisement

Changes of Focal Potentials by Iontophoretic Application of Glutamic Acid and Gamma-Amino-Butyric Acid

  • A. Herz
  • W. Zieglgänsberger
Conference paper

Abstract

The current belief is that EEG-waves are built up predominantly by summating postsynaptic transients evoked synchroneously in a large population of neurones (Creutzfeldt et al. 1966 a, b; Humphrey et al. 1968). Such synchronized activity of nerve cells can evoke potentials of considerable magnitude as seen for example in epileptic seizures. The number of cells underlying such potentials is yet unknown.

Keywords

Caudate Nucleus Lateral Geniculate Nucleus Medial Thalamus Inhibitory Amino Acid Focal Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bernardi, G., W. Zieglgänsberger, A. Herz, and E. Puil: Intracellular studies concerning the action of L-glutamic acid on spinal cord neurones of the cat. Brain Res. (1972).Google Scholar
  2. Biscoe, T. J., and D. W. Straughan: Microelectrophoretic studies of neurones in the hippocampus. J. Physiol. (London) 183, 341–359 (1966).Google Scholar
  3. Buchwald, N. A., E. J. Wyers, T. Okuma, and G. Heuser: The caudate spindle. I. Electrophysiological properties. Electroenceph. clin. Neurophysiol. 13, 509–518 (1961).Google Scholar
  4. Creutzfeldt, O. D., S. Watanabe, and H. D. Lux: Relations between EEG phenomena and potentials of single cortical cells. I. Evoked potentials after thalamic and epicortical stimulation. Electroenceph. clin. Neurophysiol. 20, 1–18 (1966a).Google Scholar
  5. Creutzfeldt, O. D., S. Watanabe, and H. D. Lux: Relations between EEG phenomena and potentials of single cortical cells. II. Spontaneous and convulsoid activity. Electroenceph. clin. Neurophysiol. 20, 19–37 (1966b).Google Scholar
  6. Curtis, D. R., and R. Davis: Pharmacological studies upon neurones of the lateral geniculate nucleus of the cat. Brit. J. Pharmacol. 18, 217–246 (1962).PubMedGoogle Scholar
  7. Curtis, D. R., and R. Davis, J. W. Phillis, and J. C. Watkins: The depression of spinal neurones by y-amino-n-butyric acid and ß-alanine. J. Physiol. (London) 146, 185–203 (1959).Google Scholar
  8. Curtis, D. R., and R. Davis, J. W. Phillis, and J. C. Watkins: The chemical excitation of spinal neurones by certain acidic amino acids. J. Physiol. (London) 150, 656–682 (1960).Google Scholar
  9. Curtis, D. R., and R. Davis, J. W. Phillis, and J. C. Watkins: Actions of amino acids on the isolated hemisected spinal cord of the toad. Brit. J. Pharmacol. 16, 262–283 (1961).Google Scholar
  10. Herz, A., W. Zieglgänsberger, and G. Färber: Microelectrophoretic studies concerning the spread of amino acids in brain tissue. Exp. Brain Res. 9, 221–235 (1969).PubMedCrossRefGoogle Scholar
  11. Heuser, G., N. A. Buchwald, and E. J. Wyers: The caudate spindle. II. Facilitatory and inhibitory caudate-cortical pathways. Electroenceph. clin. Neurophysiol. 13, 519–524 (1961).Google Scholar
  12. Humphrey, D. R.: Reanalysis of the antidromic cortical response. II. On the contribution of cell discharge and PSPs to the evoked potentials. Electroenceph. clin. Neurophysiol. 25, 421–442 (1968).Google Scholar
  13. Krnjevic, K., M. Randic, and D. W. Straughan: An inhibitory process in the cerebral cortex. J. Physiol. (London) 184, 16–48 (1966a).Google Scholar
  14. Krnjevic, K., M. Randic, and D. W. Straughan: Nature of a cortical inhibitory process. J. Physiol. (London) 184, 49–77 (1966b).Google Scholar
  15. Phillis, J. W., A. K. Tebecis, and D. H. York: A study of cholinoceptive cells in the lateral geniculate nucleus. J. Physiol. (London) 192, 695–713 (1967).Google Scholar

Copyright information

© Springer-Verlag/Wien 1972

Authors and Affiliations

  • A. Herz
    • 1
  • W. Zieglgänsberger
    • 1
  1. 1.Max-Planck-Institut für PsychiatrieMünchenGermany

Personalised recommendations