Automorphism Groups of C*-Algebras, Fell Bundles, W*-Bigebras, and the Description of Internal Symmetries in Algebraic Quantum Theory

  • M. E. Mayer
Conference paper
Part of the Few-Body Systems book series (FEWBODY, volume 8/1971)


There is relatively little justification for including lectures on the algebraic approach to field theory, particularly lectures devoted to some mathematical aspects, in a course dedicated mainly to hadron physics. My only defense is the fact that I too will be using the word duality in at least two different meanings, and certainly in a sense which has nothing at all to do with the duality concept now fashionable in high energy physics.


Gauge Group Compact Group Duality Theorem Covariant System Double Cone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. E. Segal, Postulates for general quantum mechanics, Ann. of Math. 48, 930 (1947).MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Cf. e. g. D. Ruelle, Statistical Mechanics, Benjamin, N. Y. 1969.Google Scholar
  3. 3.
    R. Haag and D. Kastler, An algebraic approach to quantum field theory, J. Math. Phys. 5, 848–661 (1964)MathSciNetADSMATHCrossRefGoogle Scholar
  4. 4.
    M. Takesaki, Tomita’s theory of Modular Hilbert Algebras and its Applications, Lecture Notes in Math. n°128, Springer, Berlin-Heidelberg-New York, 1970.Google Scholar
  5. 5.
    J. Dixmier, Les algébres d’opérateurs dans l’espace Hilbertien (Algébres de von Neumann), 2e Ed. Gauthier-Villars, Paris 1969, quoted as DN. J. Dixmier, Les C*-algébres et leurs representations,2e Ed. Gauthier-Villars, Paris, 1969, quoted as DC*.Google Scholar
  6. 6.
    see e.g. H. Behncke, A remark on C*-Algebras, Commun. Math. Phys. 12, 142 (1969); A note on the Gel’fandNaimark conjecture, Commun. Pure Appl. Math. 23, 189 (1970).Google Scholar
  7. 7.
    V. Bargmann, Note on Wigner’s theorem on symmetry operations, J. Math. Phys. 5, 862 (1964).MathSciNetADSMATHCrossRefGoogle Scholar
  8. 8.
    R. Kadison, Transformation of states in operator theory and dynamics, Topology, 3, Suppl. 2, 177–198 (1965).MathSciNetGoogle Scholar
  9. 9.
    H. Araki, Von Neumann algebras of local observables for the free scalar field, J. Math. Phys. 5, 1 (1964); G. F. dell’Antonio, Structure of the algebras of some free systems, Commun. Math. Phys. 9, 81–117 (1968). Cf. also (10).Google Scholar
  10. 10.
    S. Doplicher, R. Haag and J. E. Roberts, Fields observables and gauge transformations, I, II, Commun. Math. Phys. 13, 1 (1969), 15, 173 (1969), quoted as DHR I, II; K. Druhl, R. Haag and J. E. Roberts, On parastatistics, Commun. Math. Phys. 18, 2o4–226 (1970). Cf. also the recent example worked out by R. F. Streater and I. F. Wilde, Fermion states of a boson field, Nucl. Phys. B24, 561–575 (1970).Google Scholar
  11. 11.
    e.g. J. Dixmier, Varenna Lectures, 1968 Academic Press, 19 69.Google Scholar
  12. 12.
    G. Zeller-Meier, Produits croisés d’une C*-algébre par un groupe d’automorphismes, J. Math. Pures et Appl. 47, l01–239 (1968).Google Scholar
  13. 13.
    H. Borchers, On the implementability of automorphism groups, Commun. Math. Phys. 14, 305 (1969), also Cargése Lectures 1969, D. Kastler, Ed. Gordon and Breach, N. Y. 1970; C*-algebras and locally compact groups of automorphisms, Marseille Preprint 70/P. 320.Google Scholar
  14. 14.
    A. Guichardet and D. Kastler, Désintégration des états quasi-invariants des C*-algébres, J. math. Pures et Appl. 49, 349–380 (1970).MathSciNetMATHGoogle Scholar
  15. 15.
    J. M. G. Fell, An extension of Mackey’s method to Banach-“-algebraic bundles, Mem. A. M. S. No 90, 1969.Google Scholar
  16. 16.
    M. E. Mayer, Differentiable cross sections in Banach*-algebraic bundles, Cargése Lectures 1969,D. Kastler, Ed. Gordon and Breach, N. Y. 1970 ).Google Scholar
  17. 17.
    e.g. L. Auslander and C. C. Moore, Unitary representations of solvable Lie groups, Mem. A. M. S. no. 62, 1966.Google Scholar
  18. 18.
    S. Dolplicher, D. Kastler and D. W. Robinson, Covariance algebras in field theory and statistical mechanics, Commun. Math. Phys. 3, 1–28 (1966).ADSCrossRefGoogle Scholar
  19. 19.
    M. Takesaki, Covariant representations of Cm-algebras and their locally compact automorphism groups, Acta Math. 119, 273–303 (1967).MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    H. Leptin, Verallgemeinerte L1-Algebren und projektive Darstellungen lokal kompakter Gruppen, I, II, Inventiones Math. 3, 257–281 (1967), 4, 68–86 (1967); Darstellungen verallgemeinerter L1-Algebren, Inventiones Math. 5, 192–215 (1968), and to be published.Google Scholar
  21. 21.
    H. Behncke, Automorphisms of crossed products, Ph. D. Thesis, Indiana University, June 1968.Google Scholar
  22. 22.
    K. H. Hofmann, The duality of compact semigroups and C*-bigebras, Lecture Notes in Math. No. 129, Springer, Berlin-Heidelberg-New York, 1970.Google Scholar
  23. 23.
    G. Hochschild, The structure of Lie groups, Sec. 1I.3, Holden-Day, 1965.Google Scholar
  24. 24.
    M. Takesaki, A characterization of group algebras as a converse of the Tannaka-Stinespring-Tatsuuma duality theorem, Amer. J. Math. 91, 529–564 (1969).MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    W. F. Stinespring, Integration theorems for gages and duality for unimodular groups, Trans. Amer. Math. Soc. 90, 15–56 (1969); G. I. Kats (Kac), Kol’tsevye gruppy i printsip dvoistvennosti I, II, (Ring-groups and the duality principle), Trudy Mosk. Mat. Obsch.l2, 259–301 (1963), 13, 84–113 (1965). (English translation available).Google Scholar
  26. 26.
    E. Hewitt and K. Ross, Abstract Harmonic analysis, vol. II, Springer, 1969.Google Scholar
  27. 27.
    J. Ernest, The enveloping algebra of a covariant system, Commun. Math. Phys. 17, 61–74 (1970); A duality theorem for the automorphism Group of a covariant system, Commun. Math. Phys. 17, 75–90) (1970).Google Scholar
  28. 28.
    A Guichardet, Ten:sornye proizvedeniya C*-algebr (Tensor products of Ce-algebras) Dokl. Akad. Nauk SSSR 60, 986–989 (1965) (Sov. Math. Dokl. 6, 210–213 (1965)).Google Scholar
  29. 29.
    M. Takesaki, A note on the direct product of operator algebras, DC* ref. 158, also DC*, ref. 207.Google Scholar
  30. 30.
    A. Wulfsohn, Produits tensoriels de C*-algébres, Bull. Soc. Math. 87, 13–27 (1963); The primitive spectrum of a tensor product of Ce-algebras, Proc. Amer. Math. Soc. 19, 1094–1096 (1968); Tensor products of Hilbert spaces and Ce-algebras, Ph. D. Thesis, University of California, Irvine, 1969.Google Scholar
  31. 31.
    J. Dieudonne, Hyperalgébres et groupes formels, Mimeographed Noted, IHES, 1958, P. Cartier, Hyperalgébres et groupes de Lie formels, Séminaire Sophus Lie, 2éme année, Paris, 1957.Google Scholar
  32. 32.
    M. Walter, Group duality and isomorphisms of Fourier and Fourier-Stieltjes algebras form a We-algebra point of view. Bull. Am. Math. Soc. 76, 1321–1325 (1970); We-algebras and Nonabelian Harmonic Analysis, PH. D. Thesis, University of California, Irvine, 1970.Google Scholar

Copyright information

© Springer-Verlag 1971

Authors and Affiliations

  • M. E. Mayer
    • 1
    • 2
  1. 1.Institut des Hautes Etudes ScientifiquesFrance
  2. 2.University of CaliforniaIrvineUSA

Personalised recommendations