Advertisement

Multi Particle Dual Model

  • I. Drummond
Conference paper
Part of the Few-Body Systems book series (FEWBODY, volume 8/1971)

Abstract

The multiparticle dual model is a generalisation of the simple Beta-function model for two-particle scattering introduced by Veneziano [1]. For the elastic scattering of two identical particles, A, of mass m,
$$A({p_1}) + A({p_2}) \to A({p_3}) + A({p_4})$$
we have as the invariant amplitude T = B(−α(s), −α((t)) + two other crossed terms. Here
$$\alpha (s) = {\alpha _o} + \alpha 's$$
(1.1)
and
$$[s = {({p_1} + {p_2})^2},t = {({p_3} - {p_2})^2}.$$
(1.2)

Keywords

Cyclic Symmetry Duality Constraint Spurious State Mobius Transformation Simultaneous Polis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Veneziano, Nuovo Cimento 57A, 190 (1968).ADSCrossRefGoogle Scholar
  2. 2.
    R. Dolen, D. Horn and C. Schmid, Phys. Rev. 166, 1768 (1968).ADSCrossRefGoogle Scholar
  3. 3.
    K. Bardacki and H. Ruegg, Phys. Letts. 28B, 342 (1968).ADSGoogle Scholar
  4. 4.
    C. G. Goebel and B. Sakita, Phys. Rev. Letts. 22, 257 (1969).ADSCrossRefGoogle Scholar
  5. 5.
    Chan Hong-Mo and Tsuo Sheung Tsun, Phys. Letts. 28B, 425 (1969).ADSCrossRefGoogle Scholar
  6. 6.
    S. Fubini and G. Veneziano, Nuovo Cimento 64A, 811 (1969); K. Bardacki and S. Mandelstam, Phys. Rev. 184, 1640 (1969).CrossRefGoogle Scholar
  7. 7.
    S. Fubini, D. Gordon and G. Veneziano, Phys. Letts. 29B, 679 (1969); Y. Nambu, Enrico Fermi Institute preprint C00264–507.Google Scholar
  8. 8.
    Z. Koba and H. G. Nielsen, Nuclear Physics B12, 517 (1969).CrossRefGoogle Scholar
  9. 9.
    This particular approach is used in a forthcoming preprint by the author “Dual Amplitudes for Currents”.Google Scholar
  10. 10.
    F. Gliozzi, Lett. Nuovo Cimento 2, 864 (1969).CrossRefGoogle Scholar
  11. 11.
    C. B. Chiu, S. Matsuda and C. Rebbi, Phys. Rev. Letts. 23, 1526 (1969). 120Google Scholar
  12. 12.
    M. A. Virasoro, Phys. Rev.Google Scholar
  13. 13.
    E. Del Giudice and P. Di Vacchia, M. I. T. preprint “Characterisation of Physical States in Dual Resonance Models”.Google Scholar
  14. 14.
    R. C. Brower and C. B. Thorn, work in progress.Google Scholar

Copyright information

© Springer-Verlag / Wien 1971

Authors and Affiliations

  • I. Drummond
    • 1
  1. 1.Department of Applied MathematicsTheoretical PhysicsCambridgeUK

Personalised recommendations