Some External Field Problems in Quantum Electrodynamics

  • T. Erber
Conference paper
Part of the Few-Body Systems book series (FEWBODY, volume 8/1971)


A number of recent discoveries and experimental developments have provided renewed stimulus for the study of quantum electrodynamic processes which are essentially linked with intense electromagnetic fields. Most discussions in this direction have been concerned with possibilities raised by the improvement of lasers, flash X-ray xources, and various combinations of these devices with high energy particle beams. However recent estimates [1,2] have merely confirmed earlier conclusions [3,4] that decisive results in this vein are still several orders of magnitude beyond the present experimental capabilities. Much more fruitful lines of investigation are associated with the following developments:
  1. (i)

    In the Summer of 1967 Miss Josephine Bell, who was working at that time at the Mullard Radio observatory, made the discovery of the first star that “ticks”. Within a matter of month, after the publication of this result, astrophysicists decided that it was plausible to identify these objects as spinning neutron “lighthouses” whose illumination is furnished by magnetic Bremsstrahlung. For our present purposes the point of key interest is that these pulsars are supposed to be surrounded by enormous magnetic fields. i.e. 1011⪝H⪝1014G, with injected electron energies in the range 0.1⪝E⪝100 MeV.. Since the essential measure of the most non-linear electrodynamic effects is the critical field m2c3/eh∿4x1013G, it is especially interesting that this value lies within the range of the hypothetical pulsar fields. Of course these pulsar models are only in the preliminary stages of development, and it is at present entirely unclear how these intense fields are sustained and how they were generated by flux compression [5]. A general review of magnetic stars and pulsars may be found in references [6] and [7].

  2. (ii)

    In November 1970 the first series of trials combining megagauss generators with a high energy accelerator finished running at SLAC. In accordance with previous suggestions [8,9] this experimental work was mainly concerned with magnetic Bremsstrahlung. The principal parameters, and comparisons with previous work, are summarized in Table I. The instrumentation is described in reference [10].



Vacuum Polarization Radiation Reaction Radiation Rate High Energy Accelerator Quantum Mechanical Result 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Brezin and C. Itzykson, Phys. Rev. 2D, 1191 (1970).ADSGoogle Scholar
  2. 2.
    E. Brezin and C. Itzykson, Phys. Rev. 3D, 618 (1971).ADSGoogle Scholar
  3. 3.
    P. P. Kane and G. Basavaraju, Rev. Mod. Phys. 39, 52 (1967).ADSCrossRefGoogle Scholar
  4. 4.
    T. Erber, Nature 190, 25 (1961).ADSCrossRefGoogle Scholar
  5. 4.
    T. Erber, Nature 190, 25 (1961).ADSCrossRefGoogle Scholar
  6. 6.
    R. C. Cameron, ed. “The Magnetic and Related Stars”, Mono Book Corp. Baltimore, 1967.Google Scholar
  7. 7.
    F. Pacini, “Neutron Stars, Pulsar Radiation, and Super-nova Remnants”, Gordon and Breach, New York, 1971.Google Scholar
  8. 8.
    T. Erber, Rev. Mod. Phys. 38, 626 (1966).MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    T. Erber, Zeit. Angew. Phys. 24, 188 (1968).Google Scholar
  10. 9.
    T. Erber, Zeit. Angew. Phys. 24, 188 (1968).Google Scholar
  11. 11.
    R. G. Newton, Phys. Rev. 3D, 626 (1971).ADSCrossRefGoogle Scholar
  12. 12.
    B. Jancovici, Phys. Rev. 187, 2275 (1969).ADSCrossRefGoogle Scholar
  13. 13.
    V. I. Ritus, Zh. Eksperim. i Teor. Fiz. 57, 2176 (1969) [JETP 30, 1181 (1970)].Google Scholar
  14. 14.
    I. M. Ternov, V. G. Bagrov, V. A. Bordovitzin and 0. F. Dorofeev, Zh. Eksperim. i. Teor. Fiz. 55, 2273 (1968) [JETP 28, 1206 (1969)].Google Scholar
  15. 15.
    Z. Bialynicki - Birula and I. Bialynicki - Birula,. Phys. Rev. 10D, 2341 (1970).Google Scholar
  16. 15.
    Z. Bialynicki - Birula and I. Bialynicki - Birula,. Phys. Rev. 10D, 2341 (1970).Google Scholar
  17. S. L. Adler, J. N. Bahcall, C. G. Callan and M. N. Rosenbluth, Phys. Rev. Letters 25, 1061 (1970).ADSCrossRefGoogle Scholar
  18. 17.
    S. Coleman and R. E. Norton, Phys. Rev. 125, 1422 (1962).MathSciNetADSMATHCrossRefGoogle Scholar
  19. 18.
    C. S. Shen and H. G. Latal, private communication.Google Scholar
  20. 19.
    N. G. van Kampen, Dan. Mat. Fys. Medd. 26, no. 15 (1951).Google Scholar
  21. 20.
    J. M. Jauch and K. M. Watson, Phys. Rev. 74•, 950; 1485 (1948).MathSciNetADSCrossRefGoogle Scholar
  22. 21.
    T. Erber and H. C. Shih, Acta Phys. Austriaca 19, 17 (1964).MathSciNetMATHGoogle Scholar
  23. 22.
    F. Herlach, Rept. on Progr. in Physics 31, 341 (1968).Google Scholar
  24. 23.
    J. Schwinger, Phys. Rev. 75, 1912 (1949).MathSciNetADSMATHCrossRefGoogle Scholar
  25. 24.
    A. A. Sokolov and I. M. Ternov, “Synchrotron Radiation”, Akademie Verlag. Berlin, 1968.Google Scholar
  26. 25.
    N. P. Klepikov, Zh. Eksperim. i Teor. Fiz. 26, 19 (1954).Google Scholar
  27. 26.
    J. J. Klein, Rev. Mod. Phys. 40, 523 (1968).ADSCrossRefGoogle Scholar
  28. 27.
    D. E. Bedo, D. H. Tomboulian and J. A. Rigert, Jr. Appl. Phys. 31, 2289 (1960).ADSCrossRefGoogle Scholar
  29. 28.
    T. Erber, Fortschr. der Physik 9, 343 (1961).MathSciNetMATHCrossRefGoogle Scholar
  30. 29.
    F. Rohrlich, “Classical Charged Particles”, Addison-Wesley, Reading, 1965 ).MATHGoogle Scholar
  31. 30.
    E. Fermi, Accad. Lincei, Atti 5, 795 (1927).Google Scholar
  32. 31.
    C. S. Shen, Phys. Rev. Letters 24, 410 (1970).CrossRefGoogle Scholar
  33. 31.
    C. S. Shen, Phys. Rev. Letters 24, 410 (1970).CrossRefGoogle Scholar
  34. 33.
    H. C. Shih and T. Erber, Acta Phys. Austriaca 28, 325 (1968).Google Scholar
  35. 34.
    K. Wildermuth and K. Baumann, Nucl. Phys. 3, 612 (1957).MATHCrossRefGoogle Scholar
  36. 35.
    T. Erber and S. M. Prastein, Acta Phys. Austriaca 32, 224 (1971).Google Scholar
  37. 36.
    R. E. Norton and W. K. R. Watson, Phys. Rev. 116, 1957 (1959).MathSciNetCrossRefGoogle Scholar
  38. 37.
    D. Bohm and M. Weinstein, Phys. Rev. 74, 1789 (1948).ADSCrossRefGoogle Scholar
  39. 38.
    Y. Nambu, Progr. Theor. Phys. 7, 595 (1952).Google Scholar
  40. 39.
    R. Baier and P. Breitenlohner, Acta Phys. Austriaca 25, 212 (1967); Nuovo Cimento 47, 117 (1967).Google Scholar
  41. 40.
    F. Rohrlich and R. L. Gluckstern, Phys. Rev. 86, 1 (1952).ADSMATHCrossRefGoogle Scholar
  42. 41.
    F. Rohrlich, Phys. Rev. 108, 169 (1957).ADSMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1971

Authors and Affiliations

  • T. Erber
    • 1
  1. 1.Illinois Institute of TechnologyChicagoUSA

Personalised recommendations