Analytic Functions: Their Integration and the Delta Function

  • Eugen Skudrzyk


Analytic Function Saddle Point Real Axis Delta Function Branch Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arfken, G.: Mathematical methods for physicists. New York and London: Academic Press. 1966.MATHGoogle Scholar
  2. Bleistein, N.: Uniform asymptotic expansion of integrals with stationary point and nearly algebraic singularity. Comm. Pure Appl. Math. 19 (1966) 353–370;MathSciNetMATHGoogle Scholar
  3. Bleistein, N.: Uniform asymptotic expansions of integrals with many nearly stationary points and algebraic singularities. J. Math. Phys. 17 (1967) 230–266.MathSciNetGoogle Scholar
  4. Brekhovskikh, L. M., Lieberman, D., Beyer, R. T.: Waves in layered media, pp. 248 249. New York, N. Y.: Academic Press. 1960.Google Scholar
  5. Brillouin, L.: Wave propagation and group velocity, pp. 81–88. New York, N. Y.: Academic Press. 1960.Google Scholar
  6. Carrier, G. F., Krook, M., Pearson, C. E.: Functions of a complex variable. New York, N. Y.: McGraw-Hill. 1966.Google Scholar
  7. Chester, C., Friedman, B., Ursell, F.: An extension of the method of steepest descents. Proc. Camb. Philos. Soc. 53 (1957) 599–611.MathSciNetADSMATHCrossRefGoogle Scholar
  8. Churchill, R. V.: Complex variables and applications. New York, N. Y.: McGraw-Hill 1960.Google Scholar
  9. Copson, E. T.: Asymptotic expansions, 120 pp. Cambridge: University Press. 1965.CrossRefGoogle Scholar
  10. Corput, J. G. Van Der: Zur Methode der Stationaren Phase I. Compositio Math. 1 (1934) 15–38;MATHGoogle Scholar
  11. Corput, J. G. Zur Methode der Stationaren Phase II. Compositio Math. 3 (1936) 328–372;MathSciNetMATHGoogle Scholar
  12. Corput, J. G. On the method of critical points. Ned. Aka. Wetensch. Proc. 51 (1948)650–658.Google Scholar
  13. Debeye, P.: Näherungsformeln für die Zylinderfunktionen für grobe Werte des Arguments und unbeschränkt veränderliche Werte des Index. Math. Amm. 67 (1909) 535–558;Google Scholar
  14. Debeye, P.: Semikonvergente Entwicklungen für die Zylinderfunktionen und ihre Ausdehnung ins Komplexe. Sitz.-Ber. math.-naturw. Kl. bayer. Akad. Wiss. München 1910, 5. Abh.Google Scholar
  15. Durand, W. F.: Aerodynamic theory, Vol. I, Divisions A—D. Berlin: Springer. 1934.CrossRefGoogle Scholar
  16. Eckart, The approximate solution of one-dimensional wave equations. Rev. Modern Phys. 20, 399–417.Google Scholar
  17. Erdélyi, A.: Asymptotic representations of Fourier integrals and the method of stationary phase. J. SIAM 3 (1955) 17–37;MATHGoogle Scholar
  18. Erdélyi, A.: Asymptotic expansions, 108 pp. Dover Press 1956.Google Scholar
  19. Ewing, W. M., Jardetzky, W. S., Press, F.: Elastic waves in layered media. New York, N. Y.: McGraw-Hill. 1957.Google Scholar
  20. Feit, D., Junger, M. C.: High frequency response of an elastic spherical shell. Journ. Appl. Mech. Trans. ASME 91 (1969) 859–864.ADSCrossRefGoogle Scholar
  21. Friedman, B.: Stationary phase with neighboring critical points. J. S. I. A. M. 7 (1959) 280–289.MATHGoogle Scholar
  22. Guillemin, E. A.: The mathematics of circuit analysis, Chapter VII. New York, N. Y.: Wiley. 1956.Google Scholar
  23. Horton, C. W.: On the extension of some Lommel integrals to Struve functions with an application to acoustic radiation. J. Math. Physics 29 (1950) 31–37.MathSciNetMATHGoogle Scholar
  24. Irving, J., Mullineux, N.: Mathematics in physics and engineering. New York and London: Academic Press. 1959.Google Scholar
  25. Jeffreys, H.: Asymptotic approximations, 144 pp. Oxford: Clarendon Press. 1962. Jones, D. S.: Fourier transform and the method of stationary phase. J. Inst. Maths. 6 Apples. 2 (1967) 197–222.Google Scholar
  26. Morse, P. M., Feshbach, H.: Methods of theoretical physics, Vol. I and II. New York, N. Y.: McGraw-Hill. 1953.Google Scholar
  27. Phillips, E. G.: Functions of a complex variable with applications. New York, N. Y.: Interscience Publishers. 1951.Google Scholar
  28. Rubinowicz, A.: Zur Integration der Wellengleichung auf Riemannschen Flächen. Math. Ann. 96, 648–687, 1927.MathSciNetMATHCrossRefGoogle Scholar
  29. Sommerfeld, A.: Partial differential equations in physics, Vol. I. New York, N. Y.: Academic Press. 1949.MATHGoogle Scholar
  30. Ursell, F.: Integrals with a large parameter. The continuation of uniformly asymptotic expansions. Proc. Camb. Phil. Soc. 61 (1965) 113–128;MathSciNetADSMATHCrossRefGoogle Scholar
  31. Ursell, F.: On Kelvin’s ship-wave pattern. J. Fluid Mech. 8 (1960) 418–431.MathSciNetADSMATHCrossRefGoogle Scholar
  32. Wasow, W.: Asymptotic expansions for ordinary differential equations, 362 pp. New York, N. Y.: Interscience Publishers. 1965.Google Scholar
  33. Watson, G. N.: The limits of applicability of the principle of stationary phase. Proc. Cambridge Phil. Soc. 19 (1916–1919) 49–55.Google Scholar
  34. Weyrich, R.: Die Zylinderfunktionen und ihre Anwendungen. Leipzig and Berlin: B. G. Teubner. 1937.Google Scholar
  35. whittaken, E. T., watson, G. N.: Modern analysis. Cambridge University Press. 1952.Google Scholar
  36. Wilf, H. S.: Mathematics for the physical sciences, pp. 131–136. New York, N. Y.: Wiley. 1969.Google Scholar

Copyright information

© Springer-Verlag/Wien 1971

Authors and Affiliations

  • Eugen Skudrzyk
    • 1
  1. 1.Ordnance Research Laboratory and Physics DepartmentThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations