Sound Radiation of Arrays and Membranes

  • Eugen Skudrzyk


The preceding two chapters dealt with the basic theory of the radiation and diffraction of vibrators, screens, or apertures. In the following two chapters, this theory will be applied to practical instances.


Sound Pressure Chebyshev Polynomial Directivity Function Side Lobe Directivity Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albers, V. M.: Underwater acoustics handbook. University Park, Pennsylvania: The Pennsylvania State University Press. 1965.Google Scholar
  2. Anderson, V. C.: Digital array phasing. J.A.S.A. 32 (1960) 867.Google Scholar
  3. Ando: On the sound radiation from semi-infinite circular pipe of certain wall thickness. Soy. Phys. Acoust. 22 (1969–70) 219–225.Google Scholar
  4. Backhaus, H.: Über die Strahlungs-und Richtwirkungseigenschaften von Schallstrahlern. Z. techn. Physik 29 (1928) 91–495;Google Scholar
  5. Backhaus, H.: Über die Strahlungs-und Richtwirkungseigenschaften von Schallstrahlern. Z. angew. Math. Mech. 8 (1928) 456–457MATHGoogle Scholar
  6. Backhaus, H.: wirkungseigenschaften von Schallstrahlern. Z. angew. Math. Mech. 8 (1928) 456 457;MATHGoogle Scholar
  7. Backhaus, H.: Das Schallfeld der kreisförmigen Kolbenmembran. Ann. Physik 5 (1930) 1–35;ADSMATHCrossRefGoogle Scholar
  8. Backhaus, H.: Zur Berechnung des Schallfeldes der kreisförmigen Kolbenmembran. Z. techn. Physik 24 (1943) 75 78.MathSciNetGoogle Scholar
  9. Backhaus, H., Trendelenburg, F.: Über die Richtwirkung von Kolbenmembranen. Z. techn. Physik 7 (1926) 630 635.Google Scholar
  10. Bell, T. G.: Hydrophone minor lobes produced by volume scattering. J.A.S.A. 31 (1959) 1304.Google Scholar
  11. Bellin, J. L. S., Beyer, R. T.: Experimental investigation of an endfire array. J.A.S.A. 34 (1962) 1051.Google Scholar
  12. Blank, F. G.: Radiation impedance of a strip executing flexural vibrations in an infinite baffle. Soy. Phys. Acoust. 14 (1968) 144.Google Scholar
  13. Bouwkamp, C. J.: A contribution to the theory of acoustic radiation. Philips Res. Rep. 1 (1945/46) 251 277.Google Scholar
  14. Braumann, H.: Mecliumrückwirkung und akustische Strahlungsdämpfung für ein kreisförmiges Plättchen. Z. Naturforsch. 3a (1948) 340–350.MathSciNetADSMATHGoogle Scholar
  15. Brown, J. L., Jr., Rowlands, R. O.: Design of directional arrays. J.A.S.A. 31 (1959) 1638.Google Scholar
  16. Buchmann, G.: Der Einfluß der Größe und Form von Schallschirmen auf die Schallabstrahlung von Lautsprechern. Akust. Z. 1 (1936) 169–174.Google Scholar
  17. Carson, D. L.: Diagnosis and cure of erratic velocity distributions in sonar projector arrays. J.A.S.A. 34 (1962) 1191–1196.Google Scholar
  18. Carter, A. H., Williams, A. O., JR.: New expansion for the velocity potential of a piston source. J.A.S.A. 23 (1951) 179.MathSciNetGoogle Scholar
  19. Chertock, G.: General reciprocity relation. J.A.S.A. 34 (1962) 989.Google Scholar
  20. Cook, E. G.: Transient and steady-state response of ultrasonic piezoelectric transducers. 1956 I.R. E. Cony. Rec. 4 (1956) 61–69.Google Scholar
  21. Coop, R. K.: Absorption of sound by patches of absorbent materials. J.A.S.A. 29 (1957) 324.Google Scholar
  22. Copley, L. G.: Fundamental results concerning integral representations in acoustic radiation. Cambridge Acoustical Associates 44 (1968) 28–32.ADSMATHCrossRefGoogle Scholar
  23. Cox, H.: Optimum arrays and the Schwartz inequality. J.A.S.A. 45 (1969) 228.MATHGoogle Scholar
  24. Davids, N., Thurston, E. G., Mueser, R. E.: Design of optimum directional acoustic arrays. J.A.S.A. 24 (1952) 50–56.Google Scholar
  25. Dehn, J. T.: Interference patterns in the near field of a circular piston. J.A.S.A. 32 (1960) 1692.Google Scholar
  26. Dumery, G.: Sur la diffraction des ondes sonores par des grilles ou des reseaux d’obstacles. Acustica 18 (1967) 334.Google Scholar
  27. Elrod, H., Jr.: More rapidly-convergent expansion for the velocity potential of a piston source. J.A.S.A. 24 (1952) 325.Google Scholar
  28. Embleton, T. F. W., Thiessen, G. J.: Efficiency of circular sources and circular arrays of point sources with linear phase variation. J.A.S.A. 34 (1962) 788;Google Scholar
  29. Embleton, T. F. W., Thiessen, G. J.: Efficiency of a linear array of point sources with periodic phase variation. J.A.S.A. 30 (1958) 1124.Google Scholar
  30. Enns, J. H., Firestone, F. A.: Sound power density fields. J.A.S.A. 13 (1942) 24–31.Google Scholar
  31. Ernstrausen, W.: Strahlergruppen mit umlaufender Phase. Akust. Z. 3 (1939) 381–389.Google Scholar
  32. Ferris, H. G.: Computation of farfield radiation patterns by use of a general integral solution of the time-dependent scalar wave equation. J.A.S.A. 41 (1967) 394.MATHGoogle Scholar
  33. Fischer, F. A.: Die Abstrahlung von Impulsen durch ebene Kolbenmembranen in starrer Wand. Acustica 1 (1951) 35–39;Google Scholar
  34. Fischer, F. A.: Über die künstliche Charakteristik der Kugelgruppe. E.N.T. 7 (1930) 369–373;Google Scholar
  35. Fischer, F. A.: Über die Peilschärfe der künstlichen Charakteristik einer beliebigen Anordnung von Strahlern im Raum. E.N.T. 8 (1931) 89–91;Google Scholar
  36. Fischer, F. A.: Über die akustische Strahlungsleistung von Strahlergruppen, insbesondere der Kreis-und Kugelgruppen. E.N.T. 9 (1932) 147 155;Google Scholar
  37. Fischer, F. A.: Richtwirkung und Strahlungsleistung von akustischen Strahlern und Strahlergruppen in der Nähe einer reflektierenden ebenen Fläche. E.N.T. 10 (1933) 19–24.Google Scholar
  38. Freedman, A.: Sound field of a rectangular piston. J.A.S.A. 32 (1960) 197.Google Scholar
  39. Gutin, L. Y.: The radiation into an elastic medium from a piston vibrating in an infinite elastic screen. Sov. Phys. Acoust. 9 (1964) 256.MathSciNetGoogle Scholar
  40. Heaps, H. S.: General theory for the synthesis of hydrophone arrays. J.A.S.A. 32 (1960) 356.MathSciNetGoogle Scholar
  41. Horton, C. W., Innis, G. S., JR.: Computation of far-field radiation patterns from measurements made near the source. J.A.S.A. 33 (1961) 877.Google Scholar
  42. Jones, R. C.: On the theory of the directional patterns of continuous source distributions on a plane surface. J.A.S.A. 16 (1945) 147 171.Google Scholar
  43. Junger, M. C.: Surface pressures generated by pistons on large spherical and cylindrical baffles. J.A.S.A. 41 (1967) 1336.Google Scholar
  44. Kaspar’yants, A. A.: Nonstationary radiation of sound by a piston. Soy. Phys. Acoust. 6 (1960) 47.Google Scholar
  45. Kinber, B. E., Tseitlin, V. B.: Measurement of the directivity patterns of acoustic arrays in the Fresnel zone. Sov. Phys. Acoust. 13 (1968) 333.Google Scholar
  46. kozina, O. G., Makarov, G.: Transient processes in the acoustic fields of special piston membranes. Soy. Phys. Acoust. 8 (1962) 49.Google Scholar
  47. Kuo, E. Y. T.: Acoustic field generated by a vibrating boundary. II. Planar array vibration and synthesis. J.A.S.A. 44(1968) 1253.MATHGoogle Scholar
  48. Kur’yanov, B. F.: Coherent and incoherent scattering of waves by a set of point scatterers distributed randomly in space. Soy. Phys. Acoust. 10 (1964) 160.Google Scholar
  49. Lasion, L. S., Suchman, D. F., Waren, A. D.: Nonlinear programming applied to linear-array design. J.A.S.A. 40 (1966) 1197–1200.Google Scholar
  50. Lowenstein, C. D., Anderson, V. C.: Quick characterization of the directional response of point array. J.A.S.A. 43 (1968) 32.Google Scholar
  51. Lyamshev, L. M.: A Method of solving the problem of sound radiation by thin elastic shells and plates. Soy. Phys. Acoust. 5 (1959) 122;MathSciNetGoogle Scholar
  52. Lyamshev, L. M.:Theory of sound radiation by thin elastic shells and plates. Soy. Phys. Acoust. 5 (1960) 431 (420).Google Scholar
  53. Maliuzhinets, G. D.: The radiation of sound by the vibrating boundaries of an arbitrary wedge, Part I. Sov. Phys. Acoust. 1 (1955) 152.Google Scholar
  54. Mangulis, V. Infinite array of circular pistons on a rigid plane baffle. J.A.S.A. 34 (1962) 1558;Google Scholar
  55. Mangulis, V. Radiation of sound from a curcular rigid piston in a nonrigid baffle. Int. J. Engns. Sci. 2 (1964) 115–127;Google Scholar
  56. Mangulis, V. Nearfield pressure for an infinite phased array of strips. J.A.S.A. 38 (1965) 78;Google Scholar
  57. Mangulis, V. Reception by an infinite array of positions and reflection by an infinite plane with mixed impedances. J.A.S.A. 44 (1968) 503;Google Scholar
  58. Mangulis, V. The time-dependent force on a sound radiator immediately following switch-on. Acustica 17 (1966) 223.Google Scholar
  59. Martin, G. E., Hickman, J. S.: Directional properties of continuous plane radiators with bizonal amplitude shading. J.A.S.A. 27 (1955) 1120.Google Scholar
  60. Mason, W. P., Hibbard, F. H.: Underwater sound tanks and baffles. J.A.S.A. 20 (1948) 476 482.Google Scholar
  61. Mclachlan, N. W.: Pressure distribution in a fluid due to the axial vibration of a rigid disk. Proc. Roy. Soc. London 122 (1929) 604–609;ADSMATHCrossRefGoogle Scholar
  62. Mclachlan, N. W.: Die ausgestrahlte Schallleistung von Kreisscheiben mit Knotenlinien. Ann. Physik 15 (1932) 440–454;ADSMATHCrossRefGoogle Scholar
  63. Mclachlan, N. W.: The acoustic and inertia pressure at any point on a vibrating circular disk. Philos. Mag. 14 (1932) 1012–1025;Google Scholar
  64. Mclachlan, N. W.: Die ausgestrahlte Schalleistung von Membranen mit Knotenlinien. Ann. Physik 15 (1932) 440–454;ADSMATHCrossRefGoogle Scholar
  65. Mclachlan, N. W.: The accession to inertia of flexible disks vibrating in a fluid. Proc. Physic. Soc. London 44 (1932) 546–555;ADSMATHCrossRefGoogle Scholar
  66. Mclachlan, N. W.: The axial sound-pressure due to diaphragms with nodal lines. Proc. Physic. Soc. London 44 (1932) 540–545;ADSMATHCrossRefGoogle Scholar
  67. Mclachlan, N. W.: Verteilung der Schallstrahlung von Kreisscheiben mit Knotenlinien. Ann. Physik 15 (1932) 422–439;ADSMATHCrossRefGoogle Scholar
  68. Mclachlan, N. W.: Loudspeakers. Oxford: Clarendon Press. 1934.Google Scholar
  69. Menges, K.: Über Richtcharakteristiken von ebenen Strahlerflächen, Strahlerstrecken mit ungleichmäßiger Amplitudenverteilung und der Halbkreislinie. Akust. Z. 6 (1941) 90–108.Google Scholar
  70. Merril, L. L., Slaymaker, F. H.: Directional characteristics of a clamped-edge disc. J.A.S.A. 20 (1948) 375 380.Google Scholar
  71. Meyer, E., Kuttruff, H., Matthaei, H.: Experimentelle Untersuchung der Schalldurchlässigkeit von schallharten, gitterartig durchbrochenen Strukturen. Acustica 15 (1965) 285.Google Scholar
  72. Miles, J. W.: Transient loading of a baffled piston. J.A.S.A. 25 (1953) 200;MathSciNetGoogle Scholar
  73. Miles, J. W.: Transient loading of a baffled strip. J.A.S.A. 25 (1953) 204.MathSciNetGoogle Scholar
  74. Mollay, C. T.: Calculation of directivity index for various types of radiations. J.A.S.A. 20 (1948) 387–405.Google Scholar
  75. Montroll, E. W., Greenberg, J. M.: Scattering of plane waves by soft obstacles. Scattering by obstacles with spherical and circular cylindrical symmetry. Physic. Rev. 86 (1952) 889–897.MathSciNetADSMATHCrossRefGoogle Scholar
  76. Morse, P. M., Rubenstein, P. J.: The diffraction of waves by ribbons and by slits. Physic. Rev. 54 (1938) 895 898.ADSMATHCrossRefGoogle Scholar
  77. Müller, R.: Eine strenge Formulierung des Problems der Beugung an Schlitzblenden in Rohren mit rechteckigem Querschnitt. Z. angew. Physik 4 (1952) 424–441.MATHGoogle Scholar
  78. Munson, J. C., Anderson, V. C.: Directivity of spherical receiving arrays. J.A.S.A. 35 (1963) 1162.Google Scholar
  79. Nimura, T., Watanabe, Y.: Effect of a finite circular baffle board on acoustic radiation. J.A.S.A. 25 (1953) 76.Google Scholar
  80. Nodtvedt, H.: The correlation function in the analysis of directive wave propagation. Philos. Mag. 42 (1951) 1022–1031.Google Scholar
  81. Oberhetttnger,F.: On transient solutions of the baffled piston problem J. Research N. B. S. 65 B 1 (1961).Google Scholar
  82. Pachner, J.: Pressure distribution in the acoustical field excited by a vibrating plate. J.A.S.A. 21 (1949) 617 625;MathSciNetGoogle Scholar
  83. Pachner, J.: On the acoustical radiation of an emitter vibrating freely in a infinite wall. J.A.S.A. 23 (1951) 185–198;MathSciNetGoogle Scholar
  84. Pachner, J.: On the acoustical radiation of an emitter vibrating freely or in a wall of finite dimensions. J.A.S.A. 23 (1951) 198–208;MathSciNetGoogle Scholar
  85. Pachner, J.: Investigation of scalar wave fields by means of instantaneous directivity patterns. J.A.S.A. 28 (1956) 90;MathSciNetGoogle Scholar
  86. Pachner, J.: On the dependence of directivity patterns on the distance from the emitter. J.A.S.A. 28 (1956) 86.MathSciNetGoogle Scholar
  87. Polk, C.: Transient behavior of aperture antennas. I.R. E. Proc. 50 (1960) 1281–1288.Google Scholar
  88. Pritchard, R. L.: Maximum directivity index of a linear point array. J.A.S.A. 26 (1954) 1034;Google Scholar
  89. Pritchard, R. L.: Optimum directivity patterns for linear point arrays. J.A.S.A. 25(1953) 879–891;Google Scholar
  90. Pritchard, R. L.: Approximate calculation of the directivity factor of linear point arrays. J.A.S.A. 25 (1953) 1010 1011.Google Scholar
  91. Queen, W. C.: Directivity of sonar receiving arrays. J.A.S.A. 47 (1970) 711.Google Scholar
  92. Quint, R. H.: Acoustic field of a circular piston in the near zone. J.A.S.A. 31 (1959) 190.Google Scholar
  93. Rusby, J. S. M.: Investigation of a mutual impedance anomaly between sound projectors mounted in an array. Acustica 14 (1964) 127–137.Google Scholar
  94. Saletta, G. F.: Phased array patterns under transient conditions. Ph. D. Thesis, Dept. of electrical engineering, Illinois Institute of Technology, Chicago, Illinois, January (1968).Google Scholar
  95. Schelxumoff, S. A.: A mathematical theory of linear arrays. B.S.T.J. 22 (1943) 80–107.Google Scholar
  96. Sherman, C. H.: Analysis of acoustic interaction effects in transducer arrays. I.E.E.E. Transactions on sonies and ultrasonics SU-13, No. 1 (1966).Google Scholar
  97. Sherman, C. H., Jordon, N. E.: Numerical approach to the transient behavior of sonar arrays. Parke Mathematical Laboratory (P. M. L.) Tech. Memo., No. 2, August (1966).Google Scholar
  98. Sherman, C. H., Moran, D. A.: Transient analysis of transducer arrays. Parke Mathematical Laboratory (P. M. L.) Scientific Report No. 1, May (1968).Google Scholar
  99. Stenzel, H.: Über die Richtwirkung von Schallstrahlern. E.N.T. 4 (1927) 239–253;Google Scholar
  100. Stenzel, H.: Über die Richtwirkung von in einer Ebene angeordneten Strahlern. E.N.T. 6 (1929) 165–181;Google Scholar
  101. Stenzel, H.: Interferenzen durch Kolbenmembranen von besonderer Form.Z. techn. Physik 10 (1929) 567 569;Google Scholar
  102. Stenzel, H.: Über die akustische Strahlung von Membranen. Ann. Physik 7 (1930) 947 982;ADSCrossRefGoogle Scholar
  103. Stenzel, H.: Über die Berechnung und Bewertung der Frequenzkurven von Membranen. E.N.T. 7 (1930) 87 99;Google Scholar
  104. Stenzel, H.: Über die Berechnung des Schallfeldes einer kreisförmigen Kolbenmembran. E.N.T. 12 (1935) 16 30;Google Scholar
  105. Stenzel, H.: Leitfadenzur Berechnung von Schallvorgängen. Berlin: Springer. 1939;Google Scholar
  106. Stenzel, H.: Über die Berechnung des Schallfeldes unmittelbar vor einer kreisförmigen Kolbenmembran. Ann. Physik 41 (1942) 245–260;MathSciNetADSCrossRefGoogle Scholar
  107. Stenzel, H.: Über die Berechnung des Schallfeldes von kreisförmigen Membranen in starrer Wand. Ann. Physik 4 (1949) 303–324;MathSciNetADSMATHCrossRefGoogle Scholar
  108. Stenzel, H.: Die akustische Strahlung der rechteckigen Kolbenmembran. Acustica 2 (1952) 263–281.MathSciNetGoogle Scholar
  109. Stephens, R. W. B., Bate, A. E.: Wave motion and sound. London: E. Arnold and Co. 1950.Google Scholar
  110. Strutt, M. J. O.: Die Wirkung einer endlichen Schirmplatte auf die Schallstrahlung eines Dipols. Z. techn. Physik 10 (1929) 124–129;Google Scholar
  111. Strutt, M. J. O.: The effect of a finite baffle on the emission of sound by a double source. Philos. Mag. 7 (1929) 537 548;Google Scholar
  112. Strutt, M. J. O.: Über die Schallstrahlung einer mit Knotenlinien schwingenden Kreismembran. Ann. Physik 11 (1931) 129–140.ADSCrossRefGoogle Scholar
  113. Swenson, G. W.: Radiation impedance of a rigid square piston in an infinite baffle. J.A.S.A. 24 (1952) 84 84.Google Scholar
  114. Thiessen, G. J., Embleton, T. F. W.: Efficiency of a linear array of point sources with linear phase variation. J.A.S.A. 30 (1958) 449.Google Scholar
  115. Tucker, D. G.: Some aspects of the design of strip arrays. Acustica 6 (1956) 403; The signal/noise performance of electroacoustic strip arrays. Acustica 8 (1958) 53;Google Scholar
  116. Tucker, D. G.:Signal/noise performance of super-directive arrays. Acustica 8 (1958) 112.Google Scholar
  117. Waren, A. D., Lasdon, L. S., Suchman, D. F.: Optimization in engineering design. I.E.E.E. Proc. 55, No. 11 (1967).Google Scholar
  118. Watanabe: Effects of a finite circular baffle board on acoustic radiation. Tohoku Univ. Tech. Reports 14 (1950) 2, 79–93;Google Scholar
  119. Watanabe:Effect of a finite circular baffle on acoustic radiation. J.A.S.A. 25 (1953) 76–80.Google Scholar
  120. Watson, R. B.: Radiation loading of a piston source in a finite circular baffle. J.A.S.A. 24 (1952) 225.Google Scholar
  121. Weekowrtz, W.: Directional circular arrays of point sources. J.A.S.A. 28 (1956) 362.Google Scholar
  122. Welkowitz, W., Fry, W. J.: Characteristics of radiating variable resonant frequency crystal systems. J.A.S.A. 26 (1954) 159.Google Scholar
  123. Williams, A. O., JR.: Piston source at high frequencies. J.A.S.A. 23 (1951) 1.Google Scholar
  124. Wilson, G. L.: Multiple pattern formation from ferro-electric sonar transducers. I. E.E.E. Transactions on sonics and ultrasonics SU-13 (1966) 16–19;Google Scholar
  125. Wilson, G. L.: Formation of difference patterns in transducer arrays with an odd number of elements. J.A.S.A. 40 (1966) 915–916.Google Scholar
  126. Wolfe, J., Malter, L.: Sound radiation from a system of vibrating circular diaphragms. Physic. Rev. 33 (1929) 282 Abstr.Google Scholar
  127. Wood, J. K.: Acoustic resistance of a pipe orifice to steady-state fluid flow. J.A.S.A. 26 (1954) 492.Google Scholar
  128. Zimmerman, P., Meier, V. A.: Ein linienhafter akustischer Gruppenstrahler mit ausgeglichenen Nebenmaxima. Acustica 17 (1966) 301.Google Scholar

Copyright information

© Springer-Verlag/Wien 1971

Authors and Affiliations

  • Eugen Skudrzyk
    • 1
  1. 1.Ordnance Research Laboratory and Physics DepartmentThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations