Skip to main content

Huygens Principle and the Rubinowicz-Kirchhoff Theory of Diffraction

  • Chapter
The Foundations of Acoustics

Abstract

In discussing diffraction, we shall frequently use the language of optics and talk about a shadow boundary, an illuminated space, light sources, and screens (boffles). A block body is an ideally absorbent body. This language is natural because most of the original work has been done for light diffraction. However, there is no difference between the computations for light and for sound waves, as long as both are based on the assumption of a scalar potential. Using a scalar and a vector potential optical computations have also been performed for boundary conditiosn that apply to electrical waves. Such computations have no bearing on sound waves and are not discussed in this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anders, T.: Beugung akustischer Wellen an einer kleinen kreisförmigen Öffnung. Z. Physik 135 (1953) 219–224.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Andrejewski, W.: Die Beugung elektromagnetischer Wellen an der leitenden Kreisscheibe und an der kreisförmigen Öffnung. Z. angew. Physik 5 (1953) 178–185.

    Google Scholar 

  • Andrews, C. L.: Diffraction pattern in a circular aperture measured in the microwave region. J. Appl. Phys. 21 (1950) 761–767.

    Article  ADS  Google Scholar 

  • Artmann, K.: Beugung polarisierten Lichtes an Blenden endlicher Dicke im Gebiet der Schattengrenze. Z. Physik 127 (1950) 468–494;

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Artmann, K.: Beugung an einer einbackigen Blende endlicher Dicke und der Zusammenhang mit der Theorie der Seitenversetzung des totalreflektierten Strahles. Ann. Physik 7 (1950) 209–212.

    Article  ADS  MATH  Google Scholar 

  • Atawani, J.: Diffraction of a sound wave by a circular aperture. Mem. Res. Inst. Acoust. Sci. Osaka 2 (1951) 14–20; Physics Abstr. 55 (1952) 2542.

    Google Scholar 

  • Atkinson, F. V.: On Sommerfeld’s “radiation condition”. Phil. Mag. (7) 40 (1949) 645–651.

    MATH  Google Scholar 

  • Baars, J. W. M.: On the diffraction of sound waves by a circular disc. Acustica 14 (1964) 289.

    MATH  Google Scholar 

  • Baker, B. B., Copson, E. T.: The mathematical theory of Huygens’ principle. Oxford: Clarendon Press. 1950.

    MATH  Google Scholar 

  • Banaugii, R. P., Goldsmith, W.: Diffraction of steady acoustic wave by surfaces of arbitrary shape. J.A.S.A. 35 (1963) 1590.

    Google Scholar 

  • Barnett, J. D.: Effect of edge parameters on Fresnel diffraction of light at a straight edge. Thesis, University of Utah, April 1959.

    Google Scholar 

  • Bekefi, G.: Diffraction of sound waves by a circular aperture. J.A.S.A. 25 (1953) 205.

    Google Scholar 

  • Belle, T. S.: Allowance for the influence of the edges of a spherical radiator on the radiated field. J.A.S.A. 15 (1970) 296;

    Google Scholar 

  • Belle, T. S.: Analysis of a slightly convex spherical radiator in the Kirchhoff approximation. Sov. Phys. Acoust. 14 (1969) 296;

    Google Scholar 

  • Belle, T. S.: Application of an integral representation of the MacDonald function for computation of the Kirchhoff integral in calculating the field of a slightly convex spherical radiator. Soy. Phys. Acoust. 14 (1969) 436.

    Google Scholar 

  • Bickley, W. G.: The diffraction of waves by a semi-infinite screen with a straight edge. Phil. Mag. (6) 39 (1920) 668–672.

    Google Scholar 

  • Bobrovnikov, M. S., Starovoitova, R. P.: Diffraction of cylindrical waves by an impedance wedge. Izv. vuzov, Fizika 6 (1963) 168–176.

    Google Scholar 

  • Boersch, A.: Über die Gültigkeit des Babinetschen Theorems. Z. Physik 131 (1951–52) 78–81.

    Google Scholar 

  • Bolt, R. H, Labate, S., Ingard, U.: Acoustic reactance of small circular orifices. J.A.S.A. 21 (1949) 94.

    Google Scholar 

  • Booker, H. G.: Slot aerials and their relation to complementary wire aerials (Babinet’s principle). J.I. E.E. Part III A 93 (1946) 620–626.

    Google Scholar 

  • Bordoni, P. G.: Methodes approchées pour l’étude des sources sonores. Ric. Sci. 15 (1945) 147–148.

    Google Scholar 

  • Born, M., Wolf, E.: Principles of optics, electromagnetic theory of propagation, interference and diffraction of light. London—New York—Paris—Los Angeles: Pergamon Press. 1959.

    MATH  Google Scholar 

  • Bouwkamp, C. J.: Note on the anomalous propagation of phase in the focus. Physica 7 (1940) 485–489;

    Article  ADS  MATH  Google Scholar 

  • Bouwkamp, C. J.: Theoretische en numericke behandeling van de buiging door een ronde opening. Diss. Groningen 1941;

    Google Scholar 

  • Bouwkamp, C. J.: A contribution to the theory of acoustic radiation. Philips Res. Rep. 1 (1945/46) 251–277;

    Google Scholar 

  • Bouwkamp, C. J.: Vibrating disk; diffraction by disks and apertures. Physica 16 (1950) 1–16;

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Bouwkamp, C. J.: A note on singularities occuring at sharp edges in electromagnetic diffraction theory. Phys.ca 12 (1946) 467–474; Diffraction theory. Phys. Soc. Repts. Progr. in Phys. 17 (1954) 35–100.

    Article  MathSciNet  ADS  Google Scholar 

  • Braunbek, W.: Neue Näherungsmethode für die Beugung am ebenen Schirm. Z. Physik 127 (1950) 381–390;

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Braunbek, W.: Zur Beugung an der Kreisscheibe. Z. Physik 127 (1950) 405–415;

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Braunbek, W.: Zur Darstellung von Wellenfeldern. Z. Naturforsch. 6a(1951)12–15;

    MathSciNet  ADS  Google Scholar 

  • Braunbek, W.: Zur Beugung an der kreisförmigen Öffnung. Z. Physik 138 (1954) 80–88;

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Braunbek, W.: Zur Beugung an Öffnungen in nichtebenen Schirmen. Z. Physik 156 (1959) 66–77.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Buddruss, C., Wille, P.: Experimentelle Untersuchungen zur Wasserschallstreuung an absorbierend verkleideten Zylindern. Acustica 18 (1969) 59.

    Google Scholar 

  • Butrov, M. V.: Diffraction of a scalar wave by a slit and by a circular aperture in a screen of arbitrary thickness. Sov. Phys. Acoust. 6 (1960) 13.

    MathSciNet  Google Scholar 

  • Carlisle, R. W.: Conditions for wide angle radiation from conical sound radiators. J.A.S.A. 15 (1943) 44–49.

    Google Scholar 

  • Carter, A. H., Williams, A. O., Jr.: New expansion for the velocity potential of a piston source. J.A.S.A. 23 (1951) 179–184.

    MathSciNet  Google Scholar 

  • Copley, L. G.: Fundamental results concerning integral representations in acoustic radiation. Cambridge Acoustical Associates 44 (1968) 28–32.

    Article  ADS  MATH  Google Scholar 

  • Copson, E. T.: Diffraction by a plane screen. Proc. Roy. Soc. London 202 (1950) 277–284.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Coquard, A.: Application du principle d’Huygens au calcul du rayonnement sonore des transformateurs. Acustica 17 (1966) 285.

    Google Scholar 

  • Courant, R, Hilbert, D.: Methoden der mathematischen Physik, Bd. II. Berlin: Springer. 1937.

    Google Scholar 

  • Danielmeyer, H. G.: Aperture corrections for sound-absorption measurements with light scattering. J.A.S.A. 47 (1970) 151.

    Google Scholar 

  • Debye, P.: Das Verhalten von Lichtwellen in der Nähe eines Brennpunktes oder einer Brennlinie Ann. Physik (4) 30 (1909) 755–776.

    Article  ADS  Google Scholar 

  • Dumery, G.: Sur la diffraction des ondes sonores par des grilles ou des reseaux d’obstacles. Acustica 18 (1967) 334.

    Google Scholar 

  • Esche, V.: Experimentelle Untersuchungen zu Einflußparametern und Größe des Kanteneffektes. Acustica 19 (1967–68) 301.

    Google Scholar 

  • Fox, E. N.: The diffraction of sound pulses by an infinitely long strip. Proc. Roy. Soc. A 241 (1948) 71–103;

    MATH  Google Scholar 

  • Fox, E. N.:The diffraction of two-dimensional sound pulses incident on an infinite uniform slit in a perfectly reflecting screen. Phil. Trans. A 242 (1949) 1–32.

    Article  ADS  MATH  Google Scholar 

  • Frank, P., Mises, R. v.: Die Differential-und Integralgleichungen der Mechanik und Physik, II. Braunschweig: Vieweg. 1935.

    Google Scholar 

  • Franz, W.: Zur Theorie der Beugung. Z. Physik 125 (1949) 563–596;

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Franz, W.: On the theory of diffraction. Proc. Physic. Soc. London A 63 (1950) 925–939;

    Article  MathSciNet  ADS  Google Scholar 

  • Franz, W.: Zur Formulierung des Huygensschen Prinzips Z Naturforsch. 3a (1948) 500–506;

    MathSciNet  MATH  Google Scholar 

  • Franz, W.: Zur Theorie der Beugung am Schirm. Z. Physik 128 (1950) 432–441.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Fraunhofer, J. Von: Neue Modifikation des Lichtes durch gegenseitige Einwirkung und Beugung der Strahlen, und Gesetze derselben. Denkschr. Münchner Akad. 8 (1822) 1;

    Google Scholar 

  • Fraunhofer, J. Von: Schuhmachers astr. Abhandl. Bd. 2, 1823; Gilberts Ann. 74 (1823) 337;

    Google Scholar 

  • Fraunhofer, J. Von: auch Gesammelte Schriften, herausg. von E. Lommel, S. 51. München: Verl. Bayer. Akad. Wiss. 1888.

    Google Scholar 

  • Fredricks, R. W.: Diffraction of an elastic pulse in a loader half-space. J.A.S.A. 33 (1961) 17.

    MathSciNet  Google Scholar 

  • Fresnel, A.: Oeuvres complètes d’Augustin Fresnel publiées par MM. Henri de Senarmont, Emile Verdet et Léonor Fresnel, Tome I. Paris: Imprimerie Impériale. 1866.

    Google Scholar 

  • Friedlander, F. G.: On the half-plane diffraction problem. Quart. J. Mech. Appl. Math. 4 (1951) 344–357; Sound pulses. Cambridge: University Press. 1958.

    Google Scholar 

  • Friedlander, F. O.: The diffraction of sound pulses I. Diffraction by a semi-infinite plane. Proc. Roy. Soc. London 186 (1946) 322–344;

    Article  ADS  MATH  Google Scholar 

  • Friedlander, F. O.:The diffraction of sound pulses II. Diffraction by an infinite wedge. Proc. Roy. Soc. London 186 (1946) 344–351;

    Article  ADS  Google Scholar 

  • Friedlander, F. O.:The diffraction of sound pulses III. Note on an integral occurring in the theory of diffraction by a semi-infinite screen. Proc. Roy. Soc. London 186 (1946) 352–355.

    Article  ADS  Google Scholar 

  • Friedman, M. B.: The method of Green’s function applied to the diffraction of pulses by wedges. Techn. Rep. 18, Dept. of Civil Eng and Eng. Mech., Columbia Univ., Nov. 1956.

    Google Scholar 

  • Gerjuoy, E.: Refraction of waves from a point source into a medium of higher velocity. Physic. Rev. 73 (1948) 1442–1449.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Ghen, L. H., Schweikert, D. G.: Sound radiation from an arbitrary body. J.A.S.A. 35 (1963) 1626.

    Google Scholar 

  • Gitis, M. B., Khimunin, A. S.: Diffraction effects in ultrasonic measurements (review). Soy. Phys. Acoust. 14 (1969) 413.

    Google Scholar 

  • Guptill, E. W.: The sound field of a piston source. Can. J. Physics 31 (1953) 394–401.

    Article  MathSciNet  ADS  Google Scholar 

  • Heaps, H. S.: Diffraction of an acoustical wave obliquely incident upon a circular disk. J.A.S.A. 26 (1954) 707.

    Google Scholar 

  • Hönl, H.: Eine strenge Formulierung des klassischen Beugungsproblems. Z. Physik 131 (1951–52) 290 304.

    Google Scholar 

  • Hönl, H., Made, A. W., Westpfahl, K.: Theorie der Beugung. Handbuch d. Phys., Bd. XXV /1, S. 218–573. Berlin—Göttingen—Heidelberg: Springer. 1961.

    Google Scholar 

  • Hönl, H., Maui;, A. W.: Die Eindeutigkeit der Lösungen in der strengen Beugungstheorie. Z. Physik 130 (1951) 569–578.

    Google Scholar 

  • Hönl, H., Westpfahl, K.: Fortentwicklung der Kirchhoffschen Beugungstheorie zu einer strengen Theorie. Max-Planck-Festschrift 1958, S. 35–64. Berlin: Deutscher Verlag der Wissenschaften. 1958.

    Google Scholar 

  • Hönl, H., Zimmer, E.: Intensität und Polarisation bei der Beugung elektromagnetischer Wellen am Spalt. Z. Physik 135 (1953) 196 218.

    Google Scholar 

  • Hosemann, R., Joerchel, D.: Die notwendige Korrektion am Babinetschen Theorem. Z. Physik 138 (1954) 209–221.

    Article  ADS  MATH  Google Scholar 

  • House, R. N., Jr.: Maximum power criterion for the vibrating free edge disk. J.A.S.A. 33 (1961) 561.

    Google Scholar 

  • Hutchins, D. L., Kouyoumjian, R. G.: Calculation of the field of a baffled array by the geometrical theory of diffraction. J.A.S.A. 45 (1969) 485–492.

    Google Scholar 

  • Huygens, C.: Traité de la lumière où sont expliquées les causes de ce que luy arrive dans la réflexion et dans la réfraction. 1690.

    Google Scholar 

  • Jones, D. S.: Note on diffraction by an edge. Quart. J. Mech. Appl. Math. 3 (1950) 420–434;

    Article  MathSciNet  MATH  Google Scholar 

  • Jones, D. S.: Removal of an inconsistency in the theory of diffraction. Proc. Cambridge Phil. Soc. 48 (1952) 733–741;

    MATH  Google Scholar 

  • Jones, D. S.: Diffraction by a thick semi-infinite plate. Proc. Roy. Soc. London 217 A (1953) 153–175;

    ADS  Google Scholar 

  • Jones, D. S.: A new method of calculating scattering, with particular reference to the circular disc. Comm. pure appl. Math. 9 (1956) 713–746.

    MATH  Google Scholar 

  • Jones, D. S., Kline, M.: Asymptotic expansion of multiple integrals and the method of stationary phase. J. Math. Physics 37 (1958) 1–28.

    MathSciNet  MATH  Google Scholar 

  • Jones, R. C.: On the theory of the directional patterns of continuous source distributions on a plane surface. J.A.S.A. 16 (1945) 147–171.

    Google Scholar 

  • Jusofie, M. J.: Schallrichtungsverteilung im Hallraum bei 2000 Hz und Kantenbeugung an absorbierenden Materialien. Acustica 13 (1963) 280.

    Google Scholar 

  • Kampen, N. G. Van: An asymptotic treatment of diffraction problems. Physica 14 (1949) 575–589; The method of stationary phase and the method of Fresnel zones. Physica 24 (1958) 437–444.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Karnovskii, M. I., Lozovlx, V. G.: Sound field of a space radiator of arbitrary configuration under mixed boundary conditions. Sov. Phys. Acoust. 14 (1969) 336.

    Google Scholar 

  • Keller, J. B.: Diffraction by a convex cylinder. I.R. E. Trans. 4 (1956) 312–321;

    Google Scholar 

  • Keller, J. B.: Diffraction by an aperture. J. Appl. Physics 28 (1957) 426–444;

    Article  ADS  MATH  Google Scholar 

  • Keller, J. B.: A geometrical theory of diffraction. Calculus of Variations and its Applications. New York, Toronto, London: McGraw-Hill 1958;

    Google Scholar 

  • Keller, J. B.: How dark is the shadow of a round-ended screen ? J. Appl. Physics 30 (1959) 1452–1454;

    Article  ADS  Google Scholar 

  • Keller, J. B.: Geometrical theory of diffraction. J. Opt. Soc. Am. 52 (1962) 116–130;

    Article  ADS  Google Scholar 

  • Keller, J. B.: Diffraction by polygonal cylinders. Electromagnetic Waves. Madison: The Univ. of Wisconsin Press. 1962.

    Google Scholar 

  • Keller, J. B., Ahluwalia, D. S.: Progressing waves diffracted by smooth surfaces. J. Math. Mech. 19 (1969) 515–530.

    MathSciNet  MATH  Google Scholar 

  • Kharkevich, A. A.: A new method for solving diffraction problems. Dokl. Akad. Nauk. SSSR 72 (1950) 45–47.

    MATH  Google Scholar 

  • Khaskind, M. D.: Propagation of acoustic and electromagnetic waves in a half space. Sov. Phys. Acoust. 5 (1960) 476.

    Google Scholar 

  • King, L. V.: On the acoustic radiation field of the piezoelectric oscillator and the effect of viscosity on the transmission. Canad. J. Research 11 (1934) 135–155, 484–488.

    Article  Google Scholar 

  • King, R. W. P., Tai Tsux Wu: The scattering and diffraction of waves. Cambridge, Mass.: Harvard Univ. Press. 1959.

    Google Scholar 

  • Kirchhoff, G.: Zur Theorie der Lichtstrahlen. Sitz.-Ber. kgl. preuß. Akad. Wiss. 22. Juni 1882, S. 641;

    Google Scholar 

  • Kirchhoff, G.:Wied. Ann. Physik 18 (1883) 663; Ges. Abhandl. Nachtrag, S. 22–54. Leipzig: Barth. 1891;

    Google Scholar 

  • Kirchhoff, G.:Vorlesungen über mathematische Optik, herausg. v. K. HENSEL. Leipzig: Teubner. 1891.

    Google Scholar 

  • Kleinman, R. E.: Integral representations of solutions of the Helmholtz equation with application to diffraction by a strip. Diss. Techn. Hogeschool to Delft. 1961;

    Google Scholar 

  • Kleinman, R. E.: Plane wave diffraction by a strip. Electromag. Theory and Antennas, Pergamon Press. 1963.

    Google Scholar 

  • Kocx, E., Harvey, F. K.: Refracting sound waves. J.A.S.A. 21 (1949) 471–481.

    Google Scholar 

  • Korn, T. S.: Étude des différents baffles acoustiques pour hautparleurs. Toute la Radio 17 (1950) 183–186; Ann. Télécom. 5 (1950) 33070.

    Google Scholar 

  • Kossel, W.: Zur Lichtbeugung. Z. Naturforsch. 3a (1948) 496–500;

    ADS  Google Scholar 

  • Kossel, W.:Didaktisches zur Lichtbeugung. Z. Naturforsch. 4 a (1949) 506–509.

    Google Scholar 

  • Kossel, W., Strohmaielt, K.: Zum Elementarvorgang der Lichtbeugung. Z. Naturforsch. 6a (1951) 504–508.

    ADS  Google Scholar 

  • Kottler, F.: Zur Theorie der Beugung an schwarzen Schirmen. Ann. Physik 70 (1923) 405 456;

    Google Scholar 

  • Kottler, F.: Elektromagnetische Theorie der Beugung an schwarzen Schirmen. Ann. Physik (4) 71 (1923) 457–508.

    Article  Google Scholar 

  • Krom, M. N., Cxernoy, L. A.: The effect of fluctuations in the incident wave on the mean intensity distribution in the vicinity of the focus of the lens. Soy. Phys. Acoust. 4 (1958) 352.

    Google Scholar 

  • Kuhl, W.: Der Einfluß der Kanten auf die Schallabsorption poröser Materialien. Acustica 10 (1960) 264.

    Google Scholar 

  • Kujawski, A.: Reciprocity theorems and Babinet’s principle in Kirchhoff’s theory of the diffraction of electromagnetic waves. Acta Phys. Polon. 21 (1962) 597–607;

    MathSciNet  Google Scholar 

  • Kujawski, A.:On the Kirchhoff Young diffraction theory of electromagnetic waves. Bull. A.ad. Polonaise Sci., Sér. sci. math. astr. phys. 11 (1963) 67–72;

    MATH  Google Scholar 

  • Kujawski, A.:On Kirchhoff’s solution of the electromagnetic diffraction problem. Acta Phys. Polon. 25 (1964) 7 9.

    Google Scholar 

  • Kuttruff, H., Riscxbieter, F.: Modellversuche zur Schallreflexion an durchbrochenen, konkaven Flächen. Acustica 11 (1961) 238.

    Google Scholar 

  • Kuznetsov, V. K.: Experimental investigation of the sound field excited by a point source in a fluid wedge with compliant boundaries. Sov. Phys. Acoust. 13 (1967) 191.

    Google Scholar 

  • Lamb, G. L., Jr.: Diffraction of a plane sound wave by a semi-infinite thin elastic plate. J.A.S.A. 31 (1959) 929–935.

    MathSciNet  Google Scholar 

  • Lamb, H.: On Sommerfeld’s diffraction problem; and on reflection by a parabolic mirror. Proc. London Math. Soc. (2) 4 (1907) 190–203; Hydrodynamics, VI. Aufl. New York, N. Y.: Dover Publication. 1945.

    Google Scholar 

  • Lapin, A. D.: Applicability of the Kirchhoff principle for calculation of the sound scattering by an uneven surface of a solid. Soy. Phys. Acoust. 15 (1969) 75.

    Google Scholar 

  • Larmor, J.: On the mathematical expression of the principle of Huygens. Proc.London Math. Soc. (2) 1 (1904) 1–13.

    Article  Google Scholar 

  • Laue, M. Von: Die Freiheitsgrade von Strahlenbündeln. Ann. Physik 44 (1914) 1197–1212;

    ADS  Google Scholar 

  • Laue, M. Von: Interferenz und Beugung elektromagnetischer Wellen, in Wienharms, Handbuch der Experimentalphysik, Bd. 18;

    Google Scholar 

  • Laue, M. Von: Wellenoptik. Enzykl. d. Math. Wiss. Bd. V/3, Art. 24 (1915) 359–487. Leipzig: Teubner;

    Google Scholar 

  • Laue, M. Von: Interferenz und Beugung elektromagnetischer Wellen (mit Ausnahme der Röntgenstrahlen) Handbuch der Experimentalphysik, Bd. 18, 211 361. Leipzig: Akad. Verlagsges. 1928;

    Google Scholar 

  • Laue, M. Von: Bemerkung über Fraunhofersche Beugung. Sitz.-Ber. preuß. Akad. Wiss., Physik.-math. Kl. 1936, 89–91.

    Google Scholar 

  • Lax, M.: The effect of radiation on the vibrations of a circular diaphragm. J.A.S.A.16 ( 1944 45 ) 5–13.

    Google Scholar 

  • Leitner, A.: Diffraction of sound by a circular disc. J.A.S.A. 21 (1949) 331–334;

    MathSciNet  Google Scholar 

  • Leitner, A.: Notes on diffraction by a circular disk. Mathematics Research Group. New York University, Washington Square College 1949. Report No. EM-12. Appl. Mech. Rev. 3 (1950) 2526.

    Google Scholar 

  • Levine, H.: Variational principles in acoustic diffraction theory. J.A.S.A. 22 (1950) 48.

    Google Scholar 

  • Levine, H., Schwinger, J.: On the theory of diffraction by an aperture in an infinite screen I. Physic. Rev. 74 (1948) 958–974; II. Physic. Rev. 75 (1949) 1423 1431.

    MathSciNet  Google Scholar 

  • Levitas, A., Lax, M.: Scattering and absorption by an acoustic strip. J.A.S.A. 23 (1951) 316.

    MathSciNet  Google Scholar 

  • Levy, B. R., Keller, J. B.: Diffraction by a smooth object. Communications on Pure and Applied Mathematics 12 (1959) 159 209.

    Google Scholar 

  • Lindsay, R. B.: High frequency sound radiation from a diaphragm. Physic. Rev. 32 (1928) 515 519.

    ADS  Google Scholar 

  • Linfoot, E. H., Wolf, E.: Phase distribution near focus in an aberration-free diffraction image. Proc. Phys. Soc. London B 69 (1956) 823–832.

    Article  ADS  MATH  Google Scholar 

  • Lippert, W. K. R.: Measurement of sound transmission through an orifice in a duct with an application to a resonator. Acustica 8 (1958) 173.

    Google Scholar 

  • Lippmann, B. A.: On the Sommerfeld half-plane problem. Quart. J. Mech. Appl. Math. 18 (1960) 301–303.

    MathSciNet  MATH  Google Scholar 

  • Lyamshev, L. M.: Sound diffraction by a semi-infinite elastic plate in a moving medium. Sov. Phys. Acoust. 12 (1967) 291 294.

    Google Scholar 

  • Maey, E.: Über die Beugung des Lichtes an einer geraden, scharfen Schirmkante. Diss. Königsberg; Wied. Ann. Physik 49 (1893) 69–104;

    Article  MATH  Google Scholar 

  • Maey, E.: Die Theorie der Beugungserscheinungen des Lichtes nach Thomas Young, ihre Geschichte und Verwertung zu einer schulgemäßen Behandlung der Lichtbeugung. Z. phys. Chem. Unterricht.17 (1904) 10 19;

    Google Scholar 

  • Maey, E.: Bemerkungen zu dem Manuskript: Eine eigentümliche Beugungserscheinung von K. Noack. Physik. Z. 25 (1924) 17–18;

    Google Scholar 

  • Maey, E.: Bemerkungen zu der Abhandlung von Friedrich Kottier „Zur Theorie der Beugung an schwarzen Schirmen“. Ann. Physik (4) 73 (1924) 16–20.

    Article  Google Scholar 

  • Maggi, G. A.: Sulla propagazione libera e perturbata delle onde luminose in un mezzo isotropo. Ann. di Matematica II a, 16 (1888) 21–48.

    Article  Google Scholar 

  • Magnus, W.: Über die Beugung elektromagnetischer Wellen an einer Halbebene. Z. Phys. 117 (1941) 168 179.

    Google Scholar 

  • Mairan, J. J.: De la diffraction. Mém. de l’anc. Acad. des Sci., S. 53. 1738.

    Google Scholar 

  • Malyuzhinets, G. D.: Certain generalizations of the method of reflections in the theory of sinusoidal wave diffraction (doctoral thesis). P. N. Lebedev Physics Institute, Academy of Sciences of the USSR. 1950;

    Google Scholar 

  • Malyuzhinets, G. D.: Mathematical formulation of the problem of forced vibrations in an arbitrary region. Dokl. AN SSSR (3) 78 (1951) 439;

    MATH  Google Scholar 

  • Malyuzhinets, G. D.: Radiation of sound from vibrating faces of an arbitrary wedge, Part II. Soy. Phys. Acoust. 1 (1955) 240;

    Google Scholar 

  • Malyuzhinets, G. D.: The radiation of sound by the vibrating boundaries of an arbitrary wedge. Akust. Z. 1 (2) 144 164; 3 (1955) 226–234 [Soy. Phys. Acoust. 1 152, 240];

    Google Scholar 

  • Malyuzhinets, G. D.: Exact solution of the problem of plane wave diffraction by a semi-infinite elastic plate. Abstracts of the Fourth All-Union Acoustics Conference [in Russian] (Izd. AN SSSR, Moscow 1956 ), p. 45;

    Google Scholar 

  • Malyuzhinets, G. D.: Excitation, reflection, and emission of surface waves from a wedge with given face impedance. Dokl. AN SSSR (3) 121 (1958) 436–439 [Soviet Physics-Doklady, Vol. 3, p. 752];

    Google Scholar 

  • Malyuzhinets, G. D.: Developments in our concepts of diffraction phenomena (on the 130 anniversary of the death of Thomas Young). Usp. Fiz. Nauk 69 (1959) 321–334 (Sov. Phys. Usp. 69, 749 758 );

    Google Scholar 

  • Malyuzhinets, G. D.: Das Sommerfeld’sche Integral und die Lösung von Beugungsaufgaben in Winkelgebieten, Bericht auf dem III. Internationalen Kongreß für Akustik in Stuttgart am 7. 9. 1959. Ann. Physik (7) 6 (1960) 107–112;

    ADS  Google Scholar 

  • Malyuzhinets, G. D.: Solution of the linearized problem of the diffraction of gravity waves by the surface of the water near a sloping shoreline by the method of Sommerfeld integrals. Abstracts of Reports to the All-Union Symposium on Wave Diffraction [in Russian] (Izd. AN SSSR, Moscow 1960 );

    Google Scholar 

  • Malyuzhinets, G. D.: Application of the Sommerfeld integral to the solution of certain problems in mathematical physics. Reports of the Fourth Mathematics Conference [in Russian] (1961);

    Google Scholar 

  • Malyuzhinets, G. D.: Examples of symmetrical problems involving diffraction by semitransmissive plates. Abstracts of the Second All-Union Symposium on Wave Diffraction, Gorki (1962), pp. 86–90.

    Google Scholar 

  • Mangulis, V.: Relation between the radiation impedance, pressure in the far field, and baffle impedance. J.A.S.A. 36 (1964) 212;

    Google Scholar 

  • Mangulis, V.: Radiation of sound from a circular disk with a uniform pressure distribution. Acustica 15 (1965) 98;

    MATH  Google Scholar 

  • Mangulis, V.: On the effects of a non-rigid strip in a baffle on the propagation of sound. TRG Incorporated (1965), pp. 23 32; On optimum baffles. J.A.S.A. 42 (1967) 646–652.

    Google Scholar 

  • Marchand, E. W., Wolf, E.: Boundary diffraction wave in the domain of the Rayleigh—Kirchhoff diffraction theory. J. Opt. Soc. Am. 52 (1962) 761–767.

    Article  MathSciNet  ADS  Google Scholar 

  • Maue, A. W.: Zur Formulierung eines allgemeinen Beugungsproblems durch eine Integralgleichung. Z. Physik 126 (1949) 601–618;

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Maue, A. W.: Komplementäre Beugungsprobleme. Z. Naturforsch. 4a (1949) 393 394;

    Google Scholar 

  • Maue, A. W.: Die Kantenbedingung in der Beugungstheorie elastischer Wellen. Z. Naturforsch. 7 a (1952) 387–389;

    Google Scholar 

  • Maue, A. W.: Die Beugung elastischer Wellen an der Halbebene. Z. angew. Math. Mech. 33 (1953) 1–10.

    MathSciNet  MATH  Google Scholar 

  • Mawardi, O.: On a variational principle in acoustics. Acustica 3 (1953) 187 191.

    MathSciNet  Google Scholar 

  • Miles, J. W.: On acoustic diffraction through an aperture in a plane screen. Acustica (Beihefte) 2 (1952) 287 291;

    Google Scholar 

  • Miles, J. W.: On the diffraction of an acoustic pulse by a wedge. Proc. Roy. Soc. London A 212 (1952) 543–547.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Mirimanov, R. G.: Beugung einer sphärischen elektromagnetischen Welle an einer kreisförmigen Scheibe (russisch). Doklady Akad. Nauk SSSR 61 (1948) 617 620.

    Google Scholar 

  • Mitra, S. K.: On Sommerfeld’s treatment of the problem of diffraction by a semiinfinite screen. Phil. Mag. (6) 37 (1919) 50 61;

    Google Scholar 

  • Mitra, S. K.:On the large-angle diffraction by apertures with curvilinear boundaries. Phil. Mag. (6) 38 (1919) 289 301;

    Google Scholar 

  • Mitra, S. K.:On a new geometrical theory of the diffraction-figures observed in the heliometer. Proc. Indian Assoc. Cultivation Sci. 6 (1920) Part I.

    Google Scholar 

  • Miyamoto, K., Wolf, E.: New approach to diffraction by aperture. J. Appl. Phys. Japan 29 (1960) 647–653;

    Google Scholar 

  • Miyamoto, K., Wolf, E.: Boundary diffraction wave in the presence of aberrations. J. Opt. Soc. Am. 51 (1961) 478;

    Google Scholar 

  • Miyamoto, K., Wolf, E.: Generalization of the Maggi—Rubinowicz theory of the boundary diffraction wave. Part I, A new representation of wave fields. J. Opt. Soc. Am. 52 (1962) 615–625;

    Article  MathSciNet  ADS  Google Scholar 

  • Miyamoto, K., Wolf, E.: Generalization of the Maggi—Rubinowicz theory of the boundary diffraction wave. Part II, Application to Kirchhoff’s theory of diffraction. J. Opt. Soc. Am. 52 (1962) 626–637.

    Article  MathSciNet  ADS  Google Scholar 

  • Morse, P. M., Rubenstein, P. J.: The diffraction of waves by ribbons and by slits. Phys. Rev. 54 (1938) 895–898.

    Article  ADS  MATH  Google Scholar 

  • Müller, R., Westphal, K.: Eine strenge Behandlung der Beugung elektromagnetischer Wellen am Spalt. Z. Physik 134 (1953) 245 263.

    Google Scholar 

  • Myshkin, V. G.: Diffraction of a scalar surface wave at oblique incidence on a boundary between impedance half-planes. Soy. Phys. Acoust. 12 (1967) 300 302.

    Google Scholar 

  • Nagoka, H.: Diffraction phenomena produced by an aperture on a curved surface. J. Coll. Sci., Imperial Univ. Japan 4 (1891) 301 322.

    Google Scholar 

  • Neubauer, W. G.: A summation formula for use in determining the reflection from irregular bodies. J.A.S.A. 35 (1963) 279.

    Google Scholar 

  • Nichols, R. H., Jr.: Effects of finite baffles on response of source with back enclosed. J.A.S.A. 18 (1946) 151–154.

    Google Scholar 

  • Nimura, T., Aida, Y.: On the radiation impedance of a rectangular plate with an infinitely large baffle. Sci. Rep. Res. Inst. Tohoku Univ. (1) 2 (1951) 337–347.

    Google Scholar 

  • Oberheitinger, F.: On asymptotic series for functions occuring in the theory of diffraction of waves by wedges. J. Math. Phys. 34 (1956) 245 255;

    Google Scholar 

  • Oberheitinger, F.:On the diffraction and reflection of waves and pulses by wedges and corners. J. Res. Nat. Bur. Stand. 61 (1958) 343 365.

    Google Scholar 

  • Obermeieu, F.: Berechnung aerodynamisch erzeugter Schallfelder mittels der Methode der „Matched Asymptotic Expansions“. Acustica 18 (1967) 238.

    Google Scholar 

  • Ott, H.: Die Sattelpunktsmethode in der Umgebung eines Poles mit Anwendung auf die Wellenoptik und Akustik. Ann. Physik (5) 43 (1943) 393–403.

    Article  MathSciNet  MATH  Google Scholar 

  • Pachner, J.: Pressure distribution in the acoustical field excited by a vibrating plate. J.A.S.A. 21 (1949) 617–625;

    MathSciNet  Google Scholar 

  • Pachner, J.:On the acoustical radiation of an emitter vibrating freely in a infinite wall. J.A.S.A. 23 (1951) 185–198;

    MathSciNet  Google Scholar 

  • Pachner, J.:On the acoustical radiation of an emitter vibrating freely or in a wall of finite dimensions. J.A.S.A. 23 (1951) 198–208.

    MathSciNet  Google Scholar 

  • Pekeris, C. L.: Theory of propagation of sound in a half space of variable sound velocity under conditions of a shadow zone. J.A.S.A. 18 (1946) 295 315.

    MathSciNet  MATH  Google Scholar 

  • Petykiewicz, J.: The diffracted wave near the boundary of shadow in the case of an incident wave fulfilling the eiconal equation. Acta Phys. Polon. 26 (1964) 229–234;

    MathSciNet  Google Scholar 

  • Petykiewicz, J.: Huygens’ principle for elastic waves. Acta Phys. Polon. 30 (1966) 223–236.

    Google Scholar 

  • Pinney, E.: A theorem of use in wave theory. J. Math. Physics 30 (1951) 1–10; Physics Abstr. 54 (1951) 9339.

    Google Scholar 

  • Popov, A. V.: Numerical solution of the wedge diffraction problem by the transverse diffusion method. Sov. Phys. Acoust. 15 (1969) 226;

    Google Scholar 

  • Popov, A. V.: Numerical solution of the problem of plane wave diffraction by the rounded edge of a semi-infinite plate. Sov. Phys. Acoust. 14 (1969) 527–529.

    Google Scholar 

  • Poritsky, H.: Extension of Weyl’s integral for harmonic spherical waves to arbitrary wave shapes. Commun. Pure Appl. Math. 4 (1951) 43 60.

    Google Scholar 

  • Pridmore-Brown, D. C., Ingard, U.: Sound propagation into the shadow zone in a temperature-stratified atmosphere above a plane boundary. J.A.S.A. 27 (1955) 36.

    Google Scholar 

  • Primakoff, H., Klein, M. J., Keller, J. B, Carstensen, E. L.: Diffraction of sound around a circular disc. J.A.S.A. 19 (1947) 132–142.

    MathSciNet  Google Scholar 

  • Pritchard, R. L.: Optimum directivity patterns for linear point arrays. J.A.S.A. 25 (1953) 879 891;

    Google Scholar 

  • Pritchard, R. L.: Approximate calculatin of the directivity factor of linear point arrays. J.A.S.A. 25 (1953) 1010–1011.

    Google Scholar 

  • Raman, Sir C. V.: Lectures on physical optics, Part I, Bangalore. The Indian Academy of Sciences 1959; Caustics formed by diffraction and the geometric theory of diffraction patterns. The Indian Academy of Sciences. A 49 (1959) 307–317.

    MathSciNet  MATH  Google Scholar 

  • Rayleigh, Lord: On the passage of waves through apertures in plane screens and allied problems. Philos. Mag. 43 (1897) 259–272.

    Google Scholar 

  • Rubinowicz, A.: Die Beugungswelle in der Kirchhoffschen Theorie der Beugungserscheinungen. Ann. Physik (4) 53 (1917) 257–278;

    Article  Google Scholar 

  • Rubinowicz, A.: Herstellung von Lösungen gemischter Randwertprobleme bei hyperbolischen Differentialgleichungen zweiter Ordnung durch Zusammenstückelung aus Lösungen einfacherer gemischter Randwertaufgaben. Monatsh. Math. Phys. 30 (1920) 65 79;

    Google Scholar 

  • Rubinowicz, A.: Zur Kirchhoffschen Beugungstheorie. Ann. Physik (4) 73 (1924) 339–364;

    Article  Google Scholar 

  • Rubinowicz, A.: Bemerkungen zur Arbeit von F. Kottler: „Zur Theorie der Beugung an schwarzen Schirmen“. Ann. Physik (4) 74 (1924) 459–460;

    Article  Google Scholar 

  • Rubinowicz, A.: Zur Theorie der Beugung an schwarzen Schirmen. Ann. Physik (4) 81 (1926) 140–164;

    Article  MATH  Google Scholar 

  • Rubinowicz, A.: Über die Eindeutigkeit der Lösung der Maxwellschen Gleichungen. Physik. Z. 27 (1926) 707–710;

    Google Scholar 

  • Rubinowicz, A.: Zur Integration der Wellengleichung auf Riemannschen Flächen. Math. Ann. 96 (1927) 648–687;

    Article  MathSciNet  MATH  Google Scholar 

  • Rubinowicz, A.: On the anomalous propagation of phase in the focus. Phys. Rev. 54 (1938) 931–936;

    Article  ADS  MATH  Google Scholar 

  • Rubinowicz, A.: Eine einfache Ableitung des Ausdruckes für die Kirchhoffsche Beugungswelle. Acta Phys. Polon. 12 (1953) 225–229;

    MATH  Google Scholar 

  • Rubinowicz, A.: Die Rolle der Beugungswelle in den Fraunhoferschen Beugungserscheinungen. Acta Phys. Polon. 13 (1954) 3–13;

    MathSciNet  MATH  Google Scholar 

  • Rubinowicz, A.: JJber eine Verallgemeinerung des Reziprozitätstheorems für Lösungen der Schwingungsgleichung mit Multipolquellen. Acta Phys. Polon. 14 (1955) 183 190;

    Google Scholar 

  • Rubinowicz, A.: Phasensprung im Brennpunkt. Acta Phys. Polon. 20 (1961) 357–367;

    Google Scholar 

  • Rubinowicz, A.: Reziprozitätstheorem und Babinetsches Prinzip in der Kirchhoffschen Theorie der Beugung. Acta Phys. Polon. 20 (1961) 725 735;

    Google Scholar 

  • Rubinowicz, A.: Beugungswelle im Falle einer beliebigen einfallenden Lichtwelle. Acta Phys. Polon. 21 (1962) 61 87;

    Google Scholar 

  • Rubinowicz, A.: Eindeutigkeitsbeweis für das elektromagnetische Sprungwertproblem. Acta Phys. Polon. 21 (1962) 415–422;

    Google Scholar 

  • Rubinowicz, A.: Über eine einfache Ableitung der mit der Lösung des Sommerfeldschen Beugungsproblems verknüpften Vektorpotentiale. Acta Phys. Polon. 28 (1965) 737 747;

    Google Scholar 

  • Rubinowicz, A.: Darstellung der Sommerfeldschen Beugungswelle in einer Gestalt, die die Beiträge der einzelnen Elemente der beugenden Kante zur gesamten Beugungswelle erkennen läßt. Acta Phys. Polon. 28 (1965) 841–860.

    MathSciNet  Google Scholar 

  • Sakharova, M. P.: Asymptotic representation of the sound field of a point source in a wedge-shaped region. Soy. Phys. Acoust. 5 (1959) 214;

    Google Scholar 

  • Rubinowicz, A.: Influence of a wedge with vibrating faces on the radiated acoustic power. Sov. Phys. Acoust. 12 (1966) 60–66.

    Google Scholar 

  • Sasao, M.: Reflection of a sound wave from a circular plate. Proc. Physic. Math. Soc. Japan 14 (1932) 510–521.

    Google Scholar 

  • Schelkunoff, S. A.: A mathematical theory of linear arrays. B.S.T.J. 22 (1943) 80–107.

    MathSciNet  MATH  Google Scholar 

  • Schenck, H. A.: Improved integral formulation for acoustic radiation problems. J.A.S.A. 44 (1968) 41–58.

    Google Scholar 

  • Schilz, W.: Richtcharakteristik der Schallabstrahlung einer durchströmten Offnung. Acustica 17 (1966) 364.

    Google Scholar 

  • Schmitt, H. J.: Diffraction of electromagnetic waves by sound waves. J.A.S.A. 33 (1961) 1288.

    Google Scholar 

  • Schäfer, C.: Einführung in die theoretische Physik, Bd. III. Berlin—Leipzig: de Gruyter. 1929.

    Google Scholar 

  • Scheffers, H.: Vereinfachte Ableitung der Formeln für die Fraunhoferschen Beugungserscheinungen. Ann. Physik 41 (1942) 211–215.

    Article  MathSciNet  ADS  Google Scholar 

  • Schelkunoff, S. A.: Field equivalence theorems. Commun. Pure Appl. Math. 4 (1951) 43 59.

    Google Scholar 

  • Schoch, A.: Betrachtungen über das Schallfeld einer Kolbenmembran. Akust. Z. 6 (1941) 318 326;

    MathSciNet  Google Scholar 

  • Schoch, A.: Schallreflexion, Schallbrechung und Schallbeugung. Ergebnisse der exakten Naturwissenschaften XXIII (1950) 127–234.

    Google Scholar 

  • Seckler, B. D., Keller, J. B.: Geometrical theory of diffraction in inhomogeneous media. J.A.S.A. 31 (1959) 192;

    MathSciNet  Google Scholar 

  • Seckler, B. D., Keller, J. B.: Asymptotic theory of diffraction in inhomogeneous media. J.A.S.A. 31 (1959) 206.

    MathSciNet  Google Scholar 

  • Seki, H., Granato, A., Truell, R.: Diffraction effects in the ultrasonic field of a piston source and their importance in the accurate measurement of attenuation. J.A.S.A. 28 (1956) 230.

    Google Scholar 

  • Severin, H.: Zur Theorie der Beugung elektromagnetischer Wellen. Z. Physik 129 (1951) 426–439.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Severin, H., Starke, C.: Beugung von Schallwellen an der kreisförmigen Offnung im schallharten Schirm. Acustica, A. B. 2 (1952) 59–66.

    Google Scholar 

  • Shifrin, Y. S.: Effect of fluctuations in the incident wave on the diffraction patterns in the focal plane of a lens. Soy. Phys. Acoust. 7 (1961) 195–200.

    Google Scholar 

  • Sieger, B.: Die Beugung einer ebenen elektrischen Welle an einem Schirm von elliptischem Querschnitt. Ann. Physik 27 (1908) 626–664.

    Article  ADS  MATH  Google Scholar 

  • Silberstein, L.: Über elektromagnetische Unstetigkeitsflächen und deren Fortpflanzung. Ann. Physik (4) 26 (1908) 751–762;Electrycznoéé i magnetyzm, Tome II (polnisch). Warszawa: E. Wende i S-ka.

    Google Scholar 

  • Sivian, L. J., O’Neil, H. T.: On sound diffraction caused by rigid circular plate, square plate, and semi-infinite screen. J.A.S.A. 3 (1932) 483–510.

    Google Scholar 

  • Skavlen, S.: On the diffraction of scalar plane waves by a slit of infinite length. Arch. Math. Naturw. 51 (1951) 61–80.

    Google Scholar 

  • Sommerfeld, A.: Analytische Theorie der Wärmeleitung. Math. Ann. 45 (1894)263–277;

    Article  MathSciNet  Google Scholar 

  • Sommerfeld, A.: Zur mathematischen Theorie der Beugungserscheinungen. Nachr. Ges.Wiss. Göttingen, Math.-physik. Kl. 1894, 338 342;

    Google Scholar 

  • Sommerfeld, A.: Zur Integration der partiellen Differentialgleichung 4u k 2 u = 0 auf Riemannschen Flächen. Nachr. Ges. Wiss. Göttingen, Math.-physik. Kl. 1895, 267–274;

    Google Scholar 

  • Sommerfeld, A.: Mathematische Theorie der Diffraction. Math. Ann. 47 (1896) 317 374;

    Google Scholar 

  • Sommerfeld, A.: Über verzweigte Potentiale im Raume.Proc. London Math. Soc. 28 (1897) 395 429;

    Google Scholar 

  • Sommerfeld, A.: Diffractionsprobleme in exakter Behandlung. J.-Ber. Deutsch. Math.-Verein. 1894 95, 4 (1897) 172 174

    Google Scholar 

  • Sommerfeld, A.: Über die Ausbreitung der Wellen in der drahtlosen Telegraphie. Ann. Physik 28 (1909) 665 737;

    Google Scholar 

  • Sommerfeld, A.: Die Greensche Funktion der Schwingungsgleichung. J.-Ber. Deutsch. Math.-Verein. 21 (1912) 309–353;

    MATH  Google Scholar 

  • Sommerfeld, A.: Theorie der Beugung, Kap. XIII in P. Frank u. R. v. Mises Differential-und Integralgleichungen der Physik, Bd. II, II. Aufl., Braunschweig: Vieweg. 1934;

    Google Scholar 

  • Sommerfeld, A.: Die frei schwingende Kolbenmembran. Ann. Physik (5) 42 (1942) 389 420;

    Google Scholar 

  • Sommerfeld, A.: Lectures on theoretical physics, 6, Partial differential equations of physics, 5, Optics. New York, N. Y.: Dover Publication. 1967;

    Google Scholar 

  • Sommerfeld, A.: Vorlesungen über theoretische Physik, Bd. IV, Optik, Bd. VI, Partielle Differentialgleichungen, 2. Aufl. bearbeitet und ergänzt von Fritz Bopp und Josef Meixner. Leipzig: Akad. Verlagsges. Geest and Portig. 1959.

    Google Scholar 

  • Spence, R. D.: Diffraction of sound by circular discs and apertures. A note on Kirchhoff approximation in diffraction theory. J.A.S.A. 20 (1948) 380–386; 21(1949) 98–100;

    Google Scholar 

  • Spence, R. D.: A note on the Kirchhoff approximation in diffraction theory.J.A.S.A. 21 (1949) 98–100.

    Google Scholar 

  • Starovoitova, R. P., Bobrovnikov, M. S., Kislitsina, V. N.: Diffraction of a surface wave by a discontinuity in an impedance plane. Radiotekhn. i élektron. 7 (2) (1962) 250;

    Google Scholar 

  • Starovoitova, R. P., Bobrovnikov, M. S., Kislitsina, V. N.: Excitation of an impedance wedge by a filamentary magnetic source located at the vertex. Izv. vuzov, Fizika 4 (1962) 130.

    Google Scholar 

  • Stratton, J. A.: Electromagnetic theory. New York and London: McGraw-Hill 1941.

    MATH  Google Scholar 

  • Stenzel, H.: Über die Richtwirkung von Schallstrahlern. E.N.T. 4 (1927) 239–253;

    Google Scholar 

  • Stenzel, H.: Über die Richtwirkung von in einer Ebene angeordneten Strahlern. E.N.T. 6 (1929) 165–181;

    Google Scholar 

  • Stenzel, H.: Interferenzen durch Kolbenmembranen von besonderer Form. Z. techn. Physik 10 (1929) 567–569;

    Google Scholar 

  • Stenzel, H.: Über die akustische Strahlung von Membranen. Ann. Physik 7 (1930) 947–982;

    Google Scholar 

  • Stenzel, H.: Über die Berechnung und Bewertung der Frequenz-kurven von Membranen. E.N.T. 7 (1930) 87–99;

    Google Scholar 

  • Stenzel, H.: Über die Berechnung des Schallfeldes einer kreisförmigen Kolbenmembran. E.N.T. 12 (1935) 16 30;

    Google Scholar 

  • Stenzel, H.: Leitfaden zur Berechnung von Schallvorgängen. Berlin: Springer. 1939;

    Google Scholar 

  • Stenzel, H.: Über die Berechnung des Schallfeldes unmittelbar vor einer kreisförmigen Kolbenmembran. Ann. Physik 41 (1942) 245–260;

    Article  MathSciNet  ADS  Google Scholar 

  • Stenzel, H.: Über die Berechnung des Schallfeldes von kreisförmigen Membranen in starrer Wand. Ann. Physik 4 (1949) 303 324;

    MathSciNet  Google Scholar 

  • Stenzel, H.: Die akustische Strahlung der rechteckigen Kolbenmembran. Acustica 2 (1952) 263–281.

    MathSciNet  Google Scholar 

  • Stephens, R. W. B., Bate, A. E.: Wave motion and sound. London: E. Arnold and Co. 1950.

    Google Scholar 

  • Storruste, A., Wergeland, H.: On two complementary diffraction problems. I. Circular hole and disc in confocal coordinates. II. Transmission of sound through a circular hole. Norske Vid. Selsk. Forh., Trondheim 21 (1948) 38–48;

    MathSciNet  Google Scholar 

  • Storruste, A., Wergeland, H.: On two complementary diffraction problems. I. Circular hole and disc in confocal coordinates. II. Transmission of sound through a circular hole. Norske Vid.Appl. Mech. Rev. 4 (1951) 455;

    Google Scholar 

  • Storruste, A., Wergeland, H.: On two complementary diffraction problems. Physic. Rev. 73 (1948) 1397–1398.

    Article  ADS  MATH  Google Scholar 

  • Strutt, M. J. O.: Beugung einer ebenen Welle an einem Spalt von endlicher Breite. Z. Physik 69 (1931) 597–617.

    Article  ADS  Google Scholar 

  • Tartakovskii, B. D.: The phase jump at the focus of spherical beams of sound. Soy. Phys. Acoust. 7 (1961) 179 (228).

    MathSciNet  Google Scholar 

  • Theimer, O., Wassermann, G. D., Wolf, E.: On the foundation of the scalar diffraction theory of optical imaging. Proc. Roy. Soc. London A 212 (1952) 426 458.

    Google Scholar 

  • Torvik, P. J.: Reflection of wave trains in semi-infinite plates. J.A.S.A. 41 (1967) 346.

    Google Scholar 

  • >Überall, H., Doolittle, R. D., Mcnicholas, J. V.: Use of sound pulses for a study of circumferential waves. J.A.S.A. 39 (1966) 564–578.

    Google Scholar 

  • Voigt, W.: Kompendium der theoretischen Physik, Bd. II. Leipzig: Veit und Comp. 1896;

    Google Scholar 

  • Voigt, W.: Theorie der Beugung ebener inhomogener Wellen an einem geradlinig begrenzten, unendlichen und absolut schwarzen Schirm. Nachr. Akad. Wiss. Göttingen, Math.-physik. Kl. 1899.

    Google Scholar 

  • Waser, J., Schomaker, V.: Fourierinversion of diffraction data. Rev. Mod. Physics 25 (1953) 671–690.

    Article  ADS  MATH  Google Scholar 

  • Waterhouse, R. V.: Diffraction effects in a random sound field. J.A.S.A. 35 (1963) 1610.

    Google Scholar 

  • Watson, B.: Radiation loading of a piston source in a finite circular baffle. J.A.S.A. 24 (1952) 225–228.

    Google Scholar 

  • Weyl, H.: Ausbreitung elektromagnetischer Wellen über einen ebenen Leiter. Ann. Physik 60 (1919) 481–500.

    Article  ADS  MATH  Google Scholar 

  • Whittaker, E. T., Watson, G. N.: A course of modern analysis, 4th ed. Cambridge: University Press. 1952.

    Google Scholar 

  • Wiener, F. M.: Diffraction of sound by rigid discs and rigid square plates. J.A.S.A.21 (1949) 334 347;

    Google Scholar 

  • Wiener, F. M.: Notes on sound diffraction by rigid circular cones. J.A.S.A.20 (1948) 367 369;

    Google Scholar 

  • Wiener, F. M.: On the relation between the sound fields radiated and diffracted by plane obstacles. J.A.S.A. 23 (1951) 697–700.

    Google Scholar 

  • Willard, G. W.: Ultrasonic absorption and velocity measurements in numerous liquids. J.A.S.A. 12 (1941) 438 448.

    Google Scholar 

  • Williams, A. O.: Acoustic intensity distribution from a “piston” source. II. The concave piston. J.A.S.A. 17 (1946) 219 227; Piston source at high frequencies. J.A.S.A. 23 (1951) 1–6.

    Google Scholar 

  • Wilson, G. P., Soroxa, W. W.: Approximation of the diffraction of sound by a circular aperture in a rigid wall of finite thickness. J.A.S.A. 37 (1965) 286.

    Google Scholar 

  • Wolf, E.: Light distribution near focus in an error-free diffraction image. Proc. Roy. Soc. London A 204 (1951) 533–548.

    Article  ADS  MATH  Google Scholar 

  • Wolff, J., Malter, L.: Sound radiation from a system of vibrating circular diaphragms. Physic. Rev. 33 (1929) 282 Abstr.

    Google Scholar 

  • Yildiz, M., Mawardi, O. K.: On the diffraction of multipole fields by a semi-infinite rigid wedge. J.A.S.A. 32 (1960) 1685.

    MathSciNet  Google Scholar 

  • Young, T.: A course of lectures on natural philosophy and mechanical arts. London 1807;

    Google Scholar 

  • Young, T.:Miscellaneous works of the late Thomas Young M. D., F. R. S., andc., and one of the eight foreign associates of the National Institute of France; Vol. I, edited by George Peacock, London: John Murray. 1855.

    Google Scholar 

  • Zavadsxrr, V. Y.: Certain diffraction problems in contiguous liquid and elastic wedges. Sov. Phys. Acoust. 12 (1966) 170 179.

    Google Scholar 

  • Zavadsxrr, V. Y., Sakuarova, M. P.: Application of special function v~ (z) in problems of wave diffraction in wedge-shaped regions. Soy. Phys. Acoust. 13 (1967) 48;

    Google Scholar 

  • Zavadsxrr, V. Y., Sakuarova, M. P.: Tables of the special function T o (z), Report of the Institute of Acoustics, Academy of Sciences of the USSR. Moscow 1960.

    Google Scholar 

  • Zernike, F.: Diffraction and optical image formation. Proc. Physic. Soc. London 61 (1948) 158–164.

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1971 Springer-Verlag/Wien

About this chapter

Cite this chapter

Skudrzyk, E. (1971). Huygens Principle and the Rubinowicz-Kirchhoff Theory of Diffraction. In: The Foundations of Acoustics. Springer, Vienna. https://doi.org/10.1007/978-3-7091-8255-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-8255-0_25

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-8257-4

  • Online ISBN: 978-3-7091-8255-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics