Advertisement

The Wave Equation in Spheroidal Coordinates and Its Solutions

  • Eugen Skudrzyk

Abstract

Computations in spheroidal coordinates have become increasingly important in recent years. Such coordinates have been used for the study of the sound radiation of ellipsoids, of discs not enclosed in baffles, of cigarshaped bodies, and of the diffraction by circular apertures. The spheroidal functions have an important property which makes them very useful in practical work. In the limiting cases of the coordinate variables, they collapse into a number of very convenient shapes such as pistons, line sources, cylinders, and spheres, and many different relations and can easily be deduced from spheroidal computations. Many different integrals can be deduced as limiting cases from integrals in spheroidal coordinates.

Keywords

Wave Equation Sound Pressure Radiation Resistance Oblate Spheroidal Sound Radiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramovitz, M., Stegun, I. A.: Handbook of mathematical functions, with formulas,graphs, and mathematical tables. New York, N. Y.: Dover Publication. 1965.Google Scholar
  2. Andebura, V. A.: Acoustical properties of spheroidal radiators. Sov. Phys. Acoust. 15 (1970) 447.Google Scholar
  3. Barakat, R.: Diffraction of plane waves by an elliptic cylinder. J.A.S.A. 35 (1963) 1990.Google Scholar
  4. Bouwkamp, C. J.: Theoretische en numericke behandeling van de buiging door een ronde opening Ph. D. thesis, B. J. J. B. Bolters Uitgevers-Maatschappy, N. V. Groningen, Batavia 1941.Google Scholar
  5. Burke, J. E.Long-wavelength scattering by hard spheroids. J.A.S.A. 40 (1966) 325;Google Scholar
  6. Burke, J. E.Low-frequency scattering by soft spheroids. J.A.S.A. 39 (1966) 826;MathSciNetGoogle Scholar
  7. Burke, J. E.Scattering by penetrable spheroids. J.A.S.A. 43 (1968) 871.Google Scholar
  8. Burke, J. E., TWERSKY, V.: Elementary results for scattering by large ellipsoids. J.A.S.A. 38 (1965) 589.Google Scholar
  9. Cjertock, G.: Sound radiation from prolate spheroids. J.A.S.A. 33 (1961) 871–876. (See also Errata for TMB report 1516, Nov. 1961.)Google Scholar
  10. Churchill, R. V.: Complex variables and applications, 2nd ed., p. 134. New York, N. Y.: McGraw-Hill 1960.Google Scholar
  11. Erdélyi, A., et al.: Higher transcendental functions, Vol. III. New York, N. Y.: McGraw-Hill. 1953.Google Scholar
  12. Flammer, C.: Spheroidal wave functions. Stanford, California: Stanford University Press. 1957.Google Scholar
  13. Hayek, S., Maggio, F. L. DI: Axisymmetric vibrations of submerged spheroidal shells. Office of Naval Research, Contract Nonr 266(67), Project 385–414, Technical Report No. 4, CU-1–64 — ONR (67) — CE. International Journal of Statistical Structures (1970);Google Scholar
  14. Hayek, S., Maggio, F. L. DI: Complex natural frequencies of vibrating submerged spheroidal shells, Vol. 6, p. 333–351. Oxford: Pergamon Press. 1970.Google Scholar
  15. Hodge, D. B.: The calculation of the spheroidal wave equation eigenvalue and eigen-functions. N 70–15026 Ohio State Univ., Columbus, Electroscience Lab. (Contract F 19268–67-C-0239) (AD-694711: Sr-3, TR-2415–4, AFCRL-69–0359), Avail: CFSTI CSCL 12/1.Google Scholar
  16. Horton, C. W.: On the diffraction of a plane sound wave by a paraboloid of revolution. II. J.A.S.A. 25 (1953) 632.MathSciNetGoogle Scholar
  17. Meixner, J.: Strenge Theorie der Beugung elektromagnetischer Wellen an der vollkommen leitenden Kreisscheibe. Z. Naturforsch. 3a (1948) 506–518;MathSciNetADSMATHGoogle Scholar
  18. Meixner, J.: Die Kantenbedingungen in der Theorie der Beugung elektromagnetischer Wellen an vollkommen leitenden ebenen Schirmen. Ann. Physik 6 (1949) 2–9;MathSciNetMATHGoogle Scholar
  19. Meixner, J.: Theorie der Beugung elektromagnetischer Wellen an der vollkommen leitenden Kreisscheibe und verwandte Probleme. Ann. Physik 12 (1953) 227–236.MathSciNetADSMATHCrossRefGoogle Scholar
  20. Meixner, J., Andrewski, W.: Strenge Theorie der Beugung ebener elektromagnetischer Wellen an der vollkommen leitenden Scheibe und an der kreisförmigen Öffnung im vollkommen leitenden ebenen Schirm. Ann Physik 7 (1950) 157–168.MathSciNetADSMATHCrossRefGoogle Scholar
  21. Meixner, J., Fritze, U.: Das Schallfeld in der Nähe einer frei schwingenden Kolbenmembran. Z. angew. Physik 1 (1949) 535–542.MATHGoogle Scholar
  22. Metxner, J., Shafke, F. W.: Mathieusche Funktionen und Sphäroidfunktionen. Berlin—Göttingen—Heidelberg: Springer. 1954.Google Scholar
  23. Morse, P. M., Feshbach, H.: Methods of mathematical physics, Vol. I and II. New York, N. Y.: McGraw-Hill. 1953.Google Scholar
  24. Nimura, T., Watanabe, Y.: Effect of a finite circular baffle board on acoustic radiation. J.A.S.A. 25 (1953) 76 79.Google Scholar
  25. Penzes, L. E.: Free vibrations of thin orthotropic oblate-spheroidal shells. J.A.S.A. 45 (1969) 500.Google Scholar
  26. Penzes, L. E., Burgin, G.: Free vibration of thin isotropic oblate-spheroidal shells. J.A.S.A. 39 (1966) 8.MATHGoogle Scholar
  27. Poole, E. G. C.: Quarterly journal of pure and applied mathematics 49, No. 309 (1923).MATHGoogle Scholar
  28. Porter, D. T.: Radial spheroidal wave functions. U.S.N. Underwater Sound Lab. Tech. Memo. 912.1–54–61, June 26, 1961.Google Scholar
  29. Silbiger, A.: Asymptotic formulas and computational methods for spheroidal wave functions. Cambridge Acoustical Associates, Inc., Report U-123–48, Prepared for Office of Naval Research, Department of the Navy, Contract Nonr-2739(00);Google Scholar
  30. Silbiger, A.:Radiation from circular pistons of elliptical profile. J.A.S.A. 33 (1961) 1515;MathSciNetGoogle Scholar
  31. Silbiger, A.: Scattering of sound by an elastic prolate spheroid. J.A.S.A. 35 (1963) 564.MathSciNetGoogle Scholar
  32. Sirs, R.: Representation asymptotique des fonctions de Mathieu et des fonctions d’onde sphéroidales. Trans. Amer. Math. Soc. 66 (1949) 93–134.MathSciNetGoogle Scholar
  33. Spence, R. D., Granger, S.: The scattering of sound from a prolate spheroid. J.A.S.A. 23 (1951) 701–706.MathSciNetGoogle Scholar
  34. Sternberg, D.: A computation procedure for the scattering of sound by a prolate spheroid. Hudson Labs., Columbia University Tech. Rept. 61, December 31, 1958;Google Scholar
  35. Sternberg, D.: The computation of associated Legendre functions of internal order and their derivatives, for arguments greater than one. Hudson Labs., Columbia University Tech. Rept. 63, May 4, 1969.Google Scholar
  36. Stratton, J. A., Morse, P. M., Cxu, L. J., Little, J. D. C., Corbato, F. J.: Spheroidal wave functions. New York, N. Y.: The Technology Press of M.I.T. and Wiley. 1956.Google Scholar
  37. Stratton, J. A., Morse, P. M., Cxu, L. J., Hunter, R. A. Elliptic cylinder and spheroidal wave functions. New York, N. Y.: The Technology Press of M.I.T. and Wiley. 1941.Google Scholar
  38. Yen, T., Maggio, F. L. Di: Forced vibrations of submerged spheroidal shells. J.A.S.A. 41 (1967) 618.MATHGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1971

Authors and Affiliations

  • Eugen Skudrzyk
    • 1
  1. 1.Ordnance Research Laboratory and Physics DepartmentThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations