The Wave Equation in Cylindrical Coordinates and Its Applications

  • Eugen Skudrzyk


Sound propagation in cylindrical ducts or in thin layers of fluid, sound radiation of cylinders, and a great number of other interersting problems can be solved by using cylindrical coordinates. These solutions depend on the distance r from an axis — called the z axis, on the azimuth φ, and on the z coordinate. Boundary conditions are usually specified for surfaces r = const, z = const, and possibly for φ = const.


Wave Equation Sound Pressure Line Source Radiation Resistance Sound Propagation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Achenbach, J. D.: Radial vibrations of an encased hollow cylinder. Acustica 18 (1967) 181.Google Scholar
  2. Adolph, R., Kneser, H. O., Schulz, I.: Die Eigenfrequenzen zylindrischer Stahlstäbe. Ann. Physik 8 (1950) 99 104.ADSGoogle Scholar
  3. Alekseev, K. V., Lependin, L. F.: Sound field of a pulsating ring on a cylinder. Sov. Phys. Acoust. 13 (1967) 98;Google Scholar
  4. Alekseev, K. V., Sound field of a system of pulsating rings on a cylinder. Sov. Phys. Acoust. 14 (1968) 27.Google Scholar
  5. Andebura, V. A.: Sound field of a linear row of finite cylindrical radiators under mixed boundary conditions. Soy. Phys. Acoust. 14 (1968) 140.Google Scholar
  6. Anderson, D. V., Barnes, C.: The dispersion of a pulse propagated through a cylindrical tube. J.A.S.A. 25 (1953) 525–528.Google Scholar
  7. Baron, M. L., Matthews, A. T., Bleich, H. H.: Forced vibrations of an elastic circular cylindrical body of finite length submerged in an acoustic fluid. Paul Weidlinger, Consulting Engineer, Office of Naval Research Technical Report No. 1 (June 1962).Google Scholar
  8. Baron, M. L., Matthews, A. T.: Forced vibrations of an elastic circular cylindrical body of finite length submerged in an acoustic fluid, Part II Computational procedures and numerical example. Paul Weidlinger, Consulting Engineer, Office of Naval Research Technical Report No. 2 (January 1963).Google Scholar
  9. Baron, M. L., Mccormick, J. M.: Sound radiation from submerged cylindrical shells of finite length. Paul Weidlinger, Consulting Engineer, Office of Naval Research Technical Report No. 3 (June 1964).Google Scholar
  10. Bate, A. E., Stephens, R. W. B.: Acoustics and vibrational physics. New York, N. Y.: St. Martin’s Press. 1966.Google Scholar
  11. Bauer, L., Tamarkin, P., Lindsay, R. B.: The scattering of ultrasonic waves in water by cylindrical obstacles. J.A.S.A. 20 (1948) 558 568.Google Scholar
  12. Beranek, L. L.: Acoustics. New York, N. Y.: McGraw-Hill. 1954.Google Scholar
  13. Bleich, H. H.: Approximate determination of the frequencies of ring stiffened cylindrical shells. Ost. Ing.-Arch. 15 (1961) 6–25 (Appl. Mechanics Revs. 3936, No. 7, 1961 ).Google Scholar
  14. Bordini, P. G., Gross, W.: Sound radiation from a finite cylinder. J. Math. Physics 27 (1949) 241–252.MathSciNetGoogle Scholar
  15. Brigham, G. A., Borg, M. F.: An approximate solution to the acoustic radiation of a finite cylinder. J.A.S.A. 32 (1960) 971 981.MathSciNetGoogle Scholar
  16. Bürk, W., Lichte, H.: Über die Schallfortpflanzung in Rohren. Akust. Z. 8 (1938) 259 270.Google Scholar
  17. Buyvol, V. N.: Radiation from two parallel cylinders in a viscous medium. Prikladnaya mekhanika 5 (1969) 58–64; NASA Technical Translation, NASA TT F-12, 963.Google Scholar
  18. Chen, L. H., Schweikert, D. G.: Sound radiation from an arbitrary body. J.A.S.A. 35 (1960) 1626 1632.MathSciNetGoogle Scholar
  19. Clemmow, P. C.: Note on the diffraction of a cylindrical wave by a perfectly conducting half-plane. Quart. J. Mech. Appl. Math. 3 (1950) 377–384.MathSciNetMATHGoogle Scholar
  20. Cook, R. K., Chrazanowski, P.: Absorption and scattering by sound absorbent cylinders. J.A.S.A. 17 (1946) 315–325.Google Scholar
  21. Cremer, L.: Theorie der LTíftschalldämmung zylindrischer Schalen. Acustica 5 (1955) 245.Google Scholar
  22. Czerlinsky, E.: Über die Ausbreitung von Ultraschallwellen in Drähten. Akust. Z. 7 (1942) 12–17.Google Scholar
  23. Dairiki, S, Lawrence, T. E., Mapleton, R. A.: Equivalent network representations for solid and mercury delay lines. J.A.S.A. 25 (1953) 841–853.Google Scholar
  24. Debye, P.: Das elektromagnetische Feld um einen Zylinder und die Theorie des Regenbogens. Physik. Z. 9 (1908) 755–778.Google Scholar
  25. Deschenes, M. J.: Cross section of a circular cylinder with an impedance-loaded strip along a generatrix. J.A.S.A. 41 (1967) 1453.Google Scholar
  26. De Vault, G. P., Curtis, C. W.: Elastic cylinder with free lateral surface and mixed time-dependent end conditions. J.A.S.A. 34 (1962) 421.Google Scholar
  27. Faran, J. J., JR.: Sound scattering by solid cylinders and spheres. J.A.S.A. 23 (1951) 405.MathSciNetGoogle Scholar
  28. Franz, W., Deppermann, K.: Theorie der Beugung am Zylinder unter Berücksichtigung der Kriechwelle. Ann. Physik 10 (1952) 361–363.MathSciNetADSMATHGoogle Scholar
  29. Franz, W.: Über die Greenschen Funktionen des Zylinders un der Kugel. Z. Naturf. 9a (1954) 705–716.MathSciNetADSMATHGoogle Scholar
  30. Fritsche, L.: Präzisionsmessung der klassischen Schallabsorption mit Hilfe des Zylinderresonators (I). Acustica 10 (1960) 189;MathSciNetMATHGoogle Scholar
  31. Fritsche, L.: Theorie des akustischen Zylinder-resonators unter Berücksichtigung der Schallanregung (II). Acustica 10 (1960) 199.MathSciNetGoogle Scholar
  32. Gazis, D. C.: Three-dimensional investigation of the propagation of waves in hollow circular cylinders. I. Analytical foundation. J.A.S.A. 31 (1959) 568;MathSciNetGoogle Scholar
  33. Gazis, D. C.: Three-dimensional investigation of the propagation of waves in hollow circular cylinders. II. Numerical results. J.A.S.A. 31 (1959) 573.MathSciNetGoogle Scholar
  34. Gilbert, F.: Scattering of impulsive elastic waves by a smooth convex cylinder. J.A.S.A. 32 (1960) 841.Google Scholar
  35. Glazanov, V. E.: Diffraction of a plate longitudinal wave by a grating of cylindrical cavities in an elastic medium. Soy. Phys. Acoust. 13 (1968) 303;Google Scholar
  36. Glazanov, V. E.: Diffraction of a wave radiated by a cylinder at a grating of acoustically compliant cylinders. Sov. Phys. Acoust. 14 (1969) 447–451.Google Scholar
  37. Golubev, A. S.: Reflection of plane waves from a cylindrical defect. Sov. Phys. Acoust. 7 (1961) 138.MathSciNetGoogle Scholar
  38. Grützmacher, M., Kallenbach, W., Nellessen, E.: Vergleich der nach verschiede.. nen Verfahren berechneten Eigenfrequenzen kreiszylindrischer Schalen mit gemessenen Werten. Acustica 17 (1966) 79.Google Scholar
  39. Hart, R. W., Cantrell, R. H.: Acoustic radiation from pressure-antisymmetric nodes of a centrally vented cylindrical cavity. J.A.S.A. 35 (1963) 18.Google Scholar
  40. Hartig, H. E., Lambert, R. F.: Attenuation in a rectangular slotted tube of (1,0)“transverse” acoustic waves. J.A.S.A. 22 (1950) 42–47.Google Scholar
  41. Hartig, H. E., Swanson, C. E.: Transverse acoustic waves in rigid tubes. Physic. Rev. 54 (1938) 618–626.ADSGoogle Scholar
  42. Heckl, M.: Experimentelle Untersuchungen zur Schalldämmung von Zylindern. Acustica 8 (1958) 259;Google Scholar
  43. Heckl, M.:Schallabstrahlung von punktförmig angeregten Hohlzylindern. Acustica 9 (1959) 86;MathSciNetGoogle Scholar
  44. Heckl, M.:Vibrations of point-driven cylindrical shell. J.A.S.A. 34 (1962) 1553.Google Scholar
  45. Heelan, P. A.: Radiation from a cylindrical source of finite length. Geophysics 18 (1953) 685–696.MathSciNetADSGoogle Scholar
  46. Huntigton, H. B.: On ultrasonic propagation through mercury in tubes. J.A.S.A. 20 (1947) 424–432.Google Scholar
  47. Hüter, T.: Über die Fortleitung von Ultraschall in festen Stäben. Z. angew. Physik 1 (1949) 274–289.Google Scholar
  48. Ihai, I. Die Beugung elektromagnetischer Wellen an einen Kreiszylinder. Z. Physik 137 (1954) 31–48.MathSciNetADSGoogle Scholar
  49. Ingard, U., Pridmore -Brown, D.: Propagation of sound in a duct with constrictions. J.A.S.A. 23 (1951) 689–694;Google Scholar
  50. Ingard, U., Pridmore -Brown, D.: Studies in the formation of Kundts tube dust figures. Philos. Mag. 7 (1929) 523–537;Google Scholar
  51. Ingard, U., Pridmore -Brown, D.: The effect of constrictions in Kundts tube and allied problems. Some theoretical considerations. Philos. Mag. 7 (1939) 873–886.Google Scholar
  52. Junger, M. C.: Vibrations of elastic shells in a fluid medium, associated radiation of sound. J. Appl. Mech. 19 (1952) 439 445;Google Scholar
  53. Junger, M. C.: Sound scattering by thin elastic shells. J.A.S.A. 24 (1952) 366–373;MathSciNetGoogle Scholar
  54. Junger, M. C.: Radiation loading of cylindrical and spherical surfaces. J.A.S.A. 24 (1952) 288–289;MathSciNetGoogle Scholar
  55. Junger, M. C.: The physical interpretation of the expression for an outgoing wave in cylindrical coordinates. J.A.S.A. 25 (1953) 40 47;Google Scholar
  56. Junger, M. C.: The concept of radiation scattering and its application to reinforced cylindrical shells. J.A.S.A. 25 (1953) 899–903;Google Scholar
  57. Junger, M. C.: Sound radiation from a radially pulsating cylinder of finite length. Harvard Univ. Acoust. Res. Lab. (24 June 1955 );Google Scholar
  58. Junger, M. C.: A variational solution of solid and free-flooding cylindrical sound radiators of finite length. Cambridge Acoust. Assoc. Tech. Rept. U-177–48 under contract Nonr-2739(00) (1 Mar. 1964 );Google Scholar
  59. Junger, M. C.: Comments on “Transient acoustic fields generated by a body of arbitrary shape”. [C. L S. Farn and H. Huang, J.A.S.A. 43 (1968) 252 257. 44 (1968) 825(L).Google Scholar
  60. Junger, M. C., Greenspon, J. E.: Methods for analyzing the radiation loading of finite cylindrical transducers. J.A.S.A. 36 (1964) 1026 (A).Google Scholar
  61. Kaiser, E. R.: Acoustical vibrations of rings. J.A.S.A. 25 (1953) 617.Google Scholar
  62. Kanevskii,I.N.: Analysis of the diffraction of a converging cylindrical wave by a cylinder. Sov. Phys. Acoust. 5 (1959) 152;MathSciNetGoogle Scholar
  63. Experimental investigation of cylindrical focusing systems. Sov. Phys. Acoust. 6 (1960)119.Google Scholar
  64. Kanevskii, I. N., Rozenberg, L. D.: Computation of the acoustic field in the focal region of a cylindrical focusing system. Soy. Phys. Acoust. 3 (1967) 46.MathSciNetGoogle Scholar
  65. Karal, F. C.: The analogous acoustical impedance for discontinuities and constrictions of circular cross section. J.A.S.A. 25 (1953) 327–334.MathSciNetGoogle Scholar
  66. Kato, K.: Reflection of sound wave due to a hollow cylinder in an elastic body. Mem. Inst. Sci. Industr. Res. Osaka Univ. 9 (1952) 16–20; Physics Abstr. 56 (1953) 688.Google Scholar
  67. Kilpatrick, J. E., Kilpatrick, M. F.: Torsional vibrations of coupled cylinders. J.A.S.A. 22 (1950) 224.Google Scholar
  68. Kneser, H. O.: Über die Dämpfung schwingender zylindrischer Stäbe durch das umgebende Medium. Z. angew. Physik 3 (1951) 113–117.Google Scholar
  69. Kolotikhina, Z. V.: On the vibrations of a cylindrical shell in water and the complex acoustical spectrum of its radiation. Soy. Phys. Acoust. 4 (1958) 344.Google Scholar
  70. Krawnovoshkin, P. E.: On supersonic waves in cylindrical tubes and the theory of the acoustic interferometer. Physic. Rev. 65 (1944) 190–195.ADSGoogle Scholar
  71. Kumar, R., Ram, S.: Flexural vibrations of a fluid-filled cylindrical cavity in an infinite solid medium. Soy. Phys. Acoust. 14 (1969–70) 163.Google Scholar
  72. Kundt, A.: Über eine neue Art akustischer Staubfiguren and über die Anwendung derselben zur Bestimmung der Schallgeschwindigkeit in festen Körpern and Gasen. Ann. Physik 127 (1866) 497–523.ADSGoogle Scholar
  73. Kundt, A., Lehmann, O.: Über longitudinale Schwingungen and Klangfiguren in zylindrischen Flüssigkeitssäulen. Ann. Physik 135 (1874) 1–12.ADSGoogle Scholar
  74. Laird, D. T., Cohen, H.: Directionality patterns for acoustic radiation from a source on a rigid cylinder. J.A.S.A. 24 (1952) 46–49;Google Scholar
  75. Laird, D. T., Directionality patterns for acoustic radiation from a source on a rigid cylinder. J.A.S.A. 24 (1952) 46.Google Scholar
  76. Lapwood, E. R.: The disturbance due to a line source in a semi-infinite elastic medium. Trans. Roy. Soc. London A 242 (1949) 63 100.MathSciNetADSMATHGoogle Scholar
  77. Levine, H.: On the theory of sound reflection in an open-ended cylindrical tube. J.A.S.A. 26 (1954) 200.Google Scholar
  78. Lichte, H.: Die Strahlungsdämpfung offener zylindrischer Pfeifen. Z. techn. Physik 5 (1924) 471–473;Google Scholar
  79. Lichte, H.: Über die Schallfortpflanzung in Rohren. E.N.T. 4 (1927) 304–308.Google Scholar
  80. Lowan, A., Morse, P., Feshbach, H., Lax, M.: Scattering and radiation from circular cylinders and spheres, mathematical tables, Project (NBS) and MIT. Underwater Sound Laboratory, US Navy Department, Washington, D.C. 1946.Google Scholar
  81. Lyamshev, L. M.: The theory governing the scattering of sound by a thin rod. Sov. Phys. Acoust. 2 (1956) 382;Google Scholar
  82. Lyamshev, L. M.: Non-mirrorlike reflection of sound by a thin cylindrical shell. Sov. Phys. Acoust. 2 (1956) 198Google Scholar
  83. Lyamshev, L. M.: The scattering of sound by elastic cylinders. Sov. Phys. Acoust. 5 (1959) 56;MathSciNetGoogle Scholar
  84. Lyamshev, L. M.: Reflection of sound by a cylindrical shell in a moving medium. Soy. Phys. Acoust. 9 (1964) 267;MathSciNetGoogle Scholar
  85. Lyamshev, L. M.: Calculation of the sound radiation from a cylindrical shell in a flow. Sov. Phys. Acoust. 14 (1968) 103.Google Scholar
  86. Manning, J. E., Maidanik, G.: Radiation properties of cylindrical shell. J.A.S.A. 36 (1964) 1691.Google Scholar
  87. Mcfadden, J. A.: Radial vibrations of thick-walled hollow cylinders. J.A.S.A. 26 (1954) 714.MathSciNetGoogle Scholar
  88. Mcskimin, H. J.: Theoretical analysis of the mercury delay line. J.A.S.A. 20 (1948) 418–424.Google Scholar
  89. Miles, J. W.: On radiation and scattering from small cylinders. J.A.S.A. 25 (1953) 1087;MathSciNetGoogle Scholar
  90. Miles, J. W.: The reflection of sound due to a change in cross section of a circular tube. J.A.S.A. 16 (1944–1945) 14–19;Google Scholar
  91. Miles, J. W.: The analysis of plane discontinuities in cylindrical tubes, Part I. J.A.S.A. 17 (1946) 259–271;MathSciNetMATHGoogle Scholar
  92. Miles, J. W.: On radiation and scattering from small cylinders. J.A.S.A. 25 (1953) 1087–1089.MathSciNetGoogle Scholar
  93. Mokhtar, M., Messih, G. A.: The acoustic characteristics of conical pipes. Proc. Physic. Soc. London B 62 (1949) 793–799.ADSGoogle Scholar
  94. Molloy, C. T., Yeh, G. C. K.: Uniform spherical radiation through thick shells. J.A.S.A. 44 (1968) 125.MATHGoogle Scholar
  95. Morse, P. M.: Vibration and sound. London: McGraw-Hill. 1936.Google Scholar
  96. Morse, P. M., Feshbach, H.: Methods of theoretical physics. New York, N. Y.: McGraw-Hill 1961.Google Scholar
  97. Morse, P. M., Ingard, K. U.: Theoretical acoustics. New York, N. Y.: McGraw-Hill. 1968.Google Scholar
  98. Muller, G. C., Black, R., Davis, T. E.: The diffraction produced by cylindrical and cubical obstacles and by circular and square plates. J.A.S.A. 10 (1938) 6–13;Google Scholar
  99. Muller, G. C., Black, R., Davis, T. E.: Reflection and transmission of sound by thin curved shells. J.A.S.A. 19 (1947) 820–832.Google Scholar
  100. Osadchenko, A. F.: Diffraction of acoustic waves in tubes with variable diameter.Zh. Tekhn. Fiz. 19 (1949) 616–633; Appl. Mech. Rev. 4 (1951) 2733.Google Scholar
  101. Palladino, J. L., Neubert, V. H.: Mobility of a long cylindrical shell. J.A.S.A. 42 (1967) 403.Google Scholar
  102. Pearson, J. P.: The diffraction of electromagnetic waves by a semi-infinite circular wave guide. Proc. Cambridge Philos. Soc. 49 (1953) 659–667.MATHGoogle Scholar
  103. Petersson, S.: Investigation of stress waves in cylindrical steel bars by means of wire strain gauges. K. Tekn. Högsk. Handl. No. 62 (1953); Physics Abstr. 56 (1953) 3933.Google Scholar
  104. Pierce, A. D.: Relation of the exact transient solution for a line source near an interface between two fluids to geometrical acoustics. J.A.S.A. 44 (1968) 33.MATHGoogle Scholar
  105. Prasad, C., Jain, R. K.: Vibrations of transversely isotropic cylindrical shells of finite length. J.A.S.A. 38 (1965) 1006.Google Scholar
  106. Rayleigh, Lord: Theory of sound, Bd. II, Kap. 11. London: Macmillan. 1929.Google Scholar
  107. Robey, D. H.: On the radiation impedance of an array of finite cylinders. J.A.S.A. 27 (1955) 706;MathSciNetGoogle Scholar
  108. Robey, D. H.: On the radiation impedance of the liquid-filled squirting cylinder.J.A.S.A. 27 (1955) 711.MathSciNetGoogle Scholar
  109. Rochester, N.: The propagation of sound in cylindrical tubes. J.A.S.A. 12 (1941) 511–513.MathSciNetGoogle Scholar
  110. Roesler, H.: Der Zylinderresonator für Präzisionsmessungen der Schallabsorption in Gasen. Acustica 17 (1966) 73.Google Scholar
  111. Rozenberg, L. D.: Analysis of gain of cylindrical sound-focusing systems. Soy. Phys. Acoust. 1 (1955) 73.Google Scholar
  112. Schwarz, M. J. DE: Su alcune questioni analitiche concernenti it calcolo del coefficiente di assorbimento acustico di cilindri rivestiti di feltro di vetro. Atti Acad. Naz. Lincei. R. Cl. Sci. Fis. Mat. Nat. 10 (1951) 152–155.Google Scholar
  113. Shaw, E. A. G.: The acoustic wave guide. I. An apparatus for the measurement of acoustic impedance using plane waves and higher order mode waves in tubes. J.A.S.A. 25 (1953).Google Scholar
  114. Shenderov, E. L.: Diffraction of a cylindrical sound wave by a cylinder. Sov. Phys. Acoust. 7 (1962) 293;Google Scholar
  115. Shenderov, E. L.:Transmission of a sound wave through an elastic cylindrical shell. J.A.S.A. 9 (1963) 178.Google Scholar
  116. Sittig, E.: Zur Systematik der elastischen Eigenschwingungen isotroper Kreiszylinder. Acustica 7 (1957) 175.MathSciNetGoogle Scholar
  117. Skudrzyk, E.: Über die Eigentöne von Räumen mit nichtebenen Wänden und die diffuse Schallreflexion. Akust. Z. 4 (1939) 172–186;Google Scholar
  118. Skudrzyk, E.: Simple and complex vibratory systems. University Park: The Pennsylvania State University Press. 1968.Google Scholar
  119. Smite“, P. W., JR.: Phase velocities of waves in a thin cylindrical shell. J.A.S.A. 27 (1955) 211;Google Scholar
  120. Smite“, P. W., JR.: Phase velocities and displacement characteristics of free waves in a thin cylindrical shell. J.A.S.A. 27 (1955) 1065.Google Scholar
  121. Smith, P. W.: Sound transmission through thin cylindrical shells. J.A.S.A. 29 (1957) 721.Google Scholar
  122. Steward, G. W., Lindsay, R. B.: Acoustics (deutsch). Berlin: C. Heymann. 1934.Google Scholar
  123. Tamarin, P.: Scattering of an underwater beam from liquid cylindrical obstacles. J.A.S.A. 21 (1949) 612–616.Google Scholar
  124. Tischner, H.: Über die Fortpflanzung des Schalles in Rohren. E.N.T. 7 (1930) 192–202.Google Scholar
  125. Twersky, V.: Multiple scattering of radiation by an arbitrary configuration of parallel cylinders. J.A.S.A. 24 (1952) 42–45.Google Scholar
  126. Tyutekin, V. V.: Diffraction of a plane sound wave by an infinite cylindrical cavity in an elastic medium with an arbitrary angle of incidence. Soy. Phys. Acoust. 6 (1960) 97;Google Scholar
  127. Tyutekin, V. V.: Scattering of plane waves by a cylindrical cavity in an isotropic elastic medium. Soy. Phys. Acoust. 5 (1959) 105.Google Scholar
  128. Überall, H., Doolittle, R. D., Ugincius, P.: Sound scattering by elastic cylinders. J.A.S.A. 43 (1968) 1.Google Scholar
  129. Viktorov, I. A., Zubova, O. M.: Normal plate modes in a solid cylindrical layer. Sov. Phys. Acoust. 9 (1963) 15.Google Scholar
  130. Weyl, H.: Ausbreitung elektromagnetischer Wellen auf einen ebenen Leiter. Aim. Physik 60 (1919) 481–500.MATHGoogle Scholar
  131. Weyrich, E.: Die Zylinderfunktionen und ihre Anwendungen. Berlin: Teubner. 1937.Google Scholar
  132. White, P. H.: Sound transmission through a finite, closed, cylindrical shell. J.A.S.A. 40 (1966) 1124.Google Scholar
  133. White, R. M.: Elastic wave scattering at a cylindrical discontinuity in a solid. J.A.S.A. 30 (1958) 771.Google Scholar
  134. Wiener, F. M.: Sound diffraction by rigid spheres and circular cylinders. J.A.S.A. 19 (1944) 444–451.Google Scholar
  135. Williams, W., Parke, N. G., Moran, D. A., Sherman, C. H.: Acoustic radiation from a finite cylinder. J.A.S.A. 36 (1964) 2316.Google Scholar
  136. Wood, J. K., Thurston, G. B.: Acoustic impedance of rectangular tubes. J.A.S.A. 25 (1953) 858–860.Google Scholar
  137. Wright, W. M., Medendorp, N. W.: Acoustic radiation from a finite line source with N-wave excitation. J.A.S.A. 43 (1968) 966.Google Scholar
  138. Yakimenko, I. P.: Scattering of sound by an inhomogeneous cylinder. Sov. Phys. Acoust. 14 (1968) 85.Google Scholar
  139. Yeh, C.: Diffraction of sound waves by a moving fluid cylinder. J.A.S.A. 44 (1968) 1216.Google Scholar
  140. Zatzkis, H.: Sound field of a moving cylinder and a moving sphere. J.A.S.A. 26 (1954) 169.MathSciNetGoogle Scholar
  141. Zitron, N. R.: Multiple scattering of elastic waves by two arbitrary cylinders. J.A.S.A. 42 (1967) 620.Google Scholar

Copyright information

© Springer-Verlag/Wien 1971

Authors and Affiliations

  • Eugen Skudrzyk
    • 1
  1. 1.Ordnance Research Laboratory and Physics DepartmentThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations